A Model for Redistribution of Knowledge

Ann María Delgado García
Rafael Oliver Cuello

Education is one of the pillars in which a Welfare State is effectively based on in order to achieve an equitable distribution of wealth. In contemporary society, knowledge and education are among the most appreciated goods, and everyone should have the right to acquire them, without distinction of gender, race, age, health, or religion. From our experience of over fifteen years at the Universitat Oberta de Catalunya we can claim that virtual learning makes access to education easier for certain population strata, whereas otherwise, they would be excluded from such a right.

In the early 1990s, the Catalan Government was the motor for the creation of new universities. The aim was for these universities to have their roots in Catalonia, in order to decentralize the university system and to foster economic and cultural development throughout the territory, specifically through the founding of higher education training and research centers in peripheral territories. The ultimate goal was to make the university system as a whole more dynamic.

One significant example of the success of Catalan university policy in the 1990s is the creation of the UOC, the first virtual University in Spain. It is an entirely virtual, online, university, and it follows the trail opened up by other virtual universities that appeared in other countries, in what is known as the third generation of distance learning, the one that owes its growth to Internet.

From the very beginning, UOC's mission was to ensure equal access to higher education and knowledge for all sectors of society using information and communications technology (ICT), making ICT an essential tool for democratizing education in the knowledge society.

It is important to remember that this university was born with a strong will to provide an adequate response to the educational needs of lifelong learning, and to make the best possible use of the great potential that the Internet offers us when it comes to developing and providing education. In particular, the main distinguishing feature of the UOC, since its creation, is its educational model, which is learner-centered. This model responds to the need to provide the university with a strong identity of its own and to try to establish a methodology that can overcome the shortcomings of traditional institutions for distance learning in Spain.

Moreover, the educational model also tries to suit university students’ profiles, and it takes into consideration social and technological factors at the time of its creation, thus striving to guarantee non-discrimination concerning accessibility to technology. In this respect, the students are the protagonists of the training process, by managing their own time, planning their own studying pace, and building their own academic itinerary.

CONTINUED ON PAGE 2
A Model for Redistribution of Knowledge

CONTINUOUS FROM PAGE 1

The pillars on which this educational model was built, based on learning activities, are flexibility of time and space, personalization, interactivity, and cooperation. And the values that UOC is committed to are diversity, participation, quality, innovation, and sustainability.

One of the aspects that distinguish the UOC model from presence-based higher education is that virtual education fosters the use of technology in the relevant field of study. As technological competence is nowadays one of the critical, generic competences in all HE programs and a common requirement of the workforce, said feature of virtual education at the UOC promotes the smooth introduction of graduates into the labor market.

The UOC has over 45,000 students from 45 countries and 15,000 graduates. Distribution of students by age is as follows: 13% are under 25; 26% are between 25 and 30; 40% are between 30 and 40; and 21% are over 40. On the other hand, 50% of them are women and 50% are men, and 93% of these students work over 30 hours a week.

As for the pedagogical model, the students are provided with a wide range of resources to do well in their subjects: the tutor gives each student personalized guidance; the teacher walks the student through the learning process; the syllabus design for each subject defines a working methodology and assessment criteria; evaluation is constantly being carried out; virtual campus enables interaction with the whole university community; the course materials and information resources are available in the virtual library.

Over fifteen years of experience in the UOC, during which time the education available has been personalized to suit the students as much as possible, have shown us that virtual education brings education to specific strata of the population that would otherwise be excluded from it.

One very significant group is that of female students with heavy family responsibilities who are entering higher education for the first time at a later age, thanks to this type of education.

Another significant group is students with major disabilities, for whom virtual education provides an opportunity of education in disciplines to which access would previously have been impossible.

A.M. Delgado Garcia, Universitat Oberta de Catalunya, Barcelona, Spain.

R. Oliver Cuello, Universitat Pompeu Fabra, Barcelona, Spain.


Access to the full text requires regular membership in AECT.

Calls for Papers, Proposals, and Participants

Call for Papers. Got a Hot Topic? A burning issue? A philosophical musing? Air your thoughts in a white paper for AECT directed at our field or our world. For more information please go to: http://aect.org/publications/whitepapers/.

Call for Proposals. It’s not too late to submit a proposal for a session at the 2011 AECT International Convention. See the article on page 3 for details.
AECT International Convention Set for November

The theme of the 2011 AECT International Convention is “Celebrate 3.0: Design. Learn. Community.” The convention site will be the Hyatt Regency Jacksonville Riverfront Hotel in Jacksonville, Florida, November 8-12, 2011.

Registration information is online: http://www.aect.org/events/registration/conventionregistration.htm.

This year’s keynote speakers are Ellen Wagner, Executive Director of WCET (www.wcet.info), a cooperative association of like-minded institutions, corporations, and educational stakeholders advancing excellence and accelerating adoption of innovative technology-enhanced teaching and learning practices and policies in higher education, and Laurence F. Johnson, the founder of the Horizon Project, which produces the acclaimed series of Horizon Reports that are now used by more than a half-million educators in nearly 60 countries, and Chief Executive Officer of the New Media Consortium, an international not-for-profit dedicated to the exploration and use of new media and new technologies.

A variety of timely workshops also will be available throughout the convention in addition to keynote and sectional sessions.

Call for Proposals

February 15, 2011, midnight (EST) is the deadline for proposals to present at the 2011 AECT International Convention. Act now to share your expertise and knowledge with your peers and those new to the field. More information: http://www.aect.org/events/call/.

Teach with Student-Produced Newscasts

Donovan R. Walling

Most of us would agree that newscasts are pretty ordinary. Flip around the television channels on any given day and there will be a mix of local, national, and international newscasts, even channels that show nothing but one long, extended newscast—all day and all night. Mundane stuff. Ask most students to watch a newscast and they will shuffle their feet, whisper to their classmates, and roll their eyes.

On the other hand, ask students to produce a newscast and the assignment suddenly takes on a new dimension. Now they will watch newscasts with fresh eyes, looking to see what newscasters do, what they say, where they look, and how they move. To produce a newscast students will have to find the news, become journalists, write a script, learn how to operate a video camera—and how to act when the camera is on them. Then there are continuity, editing, titling, and all the other post-production tasks, not to mention mastering the technology to make it all happen. Interest soars as students take control of their own learning and become actively engaged.

Media production also seldom fits neatly into a single discipline. Think “multi”—multimedia, multisensory, multidisciplinary. Scriptwriting (literacy skills), timing (math), technology (science)—these are just a few skill sets that students will tap to make their newscast.

But of course this would only work with mature students, right? Or gifted students? You be the judge. One of the most remarkable videos I saw during the International Student Media Festival showcase of entries was a student newscast. On camera were two anchors, a feature reporter, and an interviewer whose on-air guest was an adult. All of the students followed a script and were polished in their handling of the material and the program logistics. Oh, and they did the newscast in Spanish. They were not native Spanish speakers, just students learning a foreign language. But here’s the kicker: They were all second graders. That’s right: Seven-year-olds did this. They produced a winning entry with one percent inspiration, ninety-nine percent perspiration, and highly dedicated, inspiring teachers.

Donovan R. Walling, a writer, editor, and consultant, is the editor of iTECH DIGEST.

Research Roundup

Research on Technology and Student Achievement Increasing

Educational technology is being implemented throughout the world, even in places that might seem unlikely because of cultural or economic factors. Likewise, research related to educational technology also is being conducted everywhere; the diversity is too great to be adequately summarized in a few sentences. Generally speaking, the subjects of capacity and professional development tend to predominate internationally as they do in the United States. For example, a study by researchers at two universities in Taiwan examined Teachers’ Perceptions of the Dimensions and Implementation of Technology Leadership of Principals in Taiwanese Elementary Schools (Chang, Chin, and Hsu, 2008). The authors of this study involving elementary principals in seven cities concluded:

As a result of this evaluation and assessment information, Taiwan’s Department of Education could sponsor preparation programs providing professional development for principals to improve classroom technology use, evaluate teacher and student strengths and needs in technology, and develop a practical and useful technology plan. (242)

Mention of the Taiwan Department of Education raises a point of difference between the United States and many other nations, namely, that elsewhere a central or national education department or ministry usually exercises control over K-12 (and higher) education, rather than delegating primary authority to states or provinces. It is difficult, often impossible, to discern whether research such as this study is funded, mandated, or directed by the Taiwan education department. But such connections are, conjecturally, likely to be stronger abroad than they are in the United States.

Another example of the capacity-building focus is a study from Turkey that looked at elementary teachers’ use of instructional software by sampling 471 teachers in seventeen primary schools in the city centers of Elazig and Malatya (Kazu and Yavuzalp, 2008).

At the same time, some researchers are looking at the results of incorporating educational technology into teaching and learning—again in diverse locations. For example, a field study in Croatia surveyed ninety students and included interviews of twelve to examine how early elementary children use the Web (Librenjak, Vučković, and Dovedan, 2010). At the opposite end of the age spectrum, another Croatian study examined computer use in secondary schools and the effect on students’ performance in informatics at the university level (Čičin-Šain, Vukmirović, and Čičin-Šain, 2008).

Finally, there also are cross-national education and research efforts that center on or incorporate educational technology. A prime example is the initiative of the German Federal Ministry of Education and Research (BMBF), which undertakes tasks in a number of areas in cooperation with the Länder (states) within Germany, such as educational planning and the promotion of research, but also extends its reach internationally. In iteration of its catchphrase, “success through international networking,” BMBF has created specific partnerships with a number of education ministries and like organizations across South America (see www.bmf.bfd.de). These partnerships promote innovation and research primarily involving science and technology.