A Curriculum Analysis of the Online Master of Education in Curriculum and Instructional Technology Program

Aliye Karabulut
Iowa State University
Curriculum and Instructional Technology
aliye@iastate.edu

Brian Fodrey
University of North Carolina - Chapel Hill
School of Education
Instructional Technologist
fodrey@email.unc.edu

Title: A Curriculum Analysis of the Online Master of Education in Curriculum and Instructional Technology Program

Abstract: Starting in the summer of 2004, the department of Curriculum and Instruction at Iowa State University began offering an online Master of Education (M.Ed.) with a specialization in Curriculum and Instructional Technology degree program. All of the required courses were delivered at a distance using a variety of technologies. However, students traveled to campus for a face-to-face session at least once per semester. The purpose of this paper was to provide a detailed curriculum analysis of this degree program using Posner’s (2004) curriculum analysis questions: curriculum documentation, curriculum proper, and curriculum in use. We employed a document analysis method, and examined an article published by the curriculum designers, course syllabi, the program website, and recruitment brochures; and interviewed key participants in the development of the program. Based on our analysis, suggestions were made to improve the curriculum and overcome potential weaknesses such as offering students a more diverse and dynamic program of study based on student interests, and providing instructors with training and resources necessary to create successful online learning environments.

Descriptors: Online Education, Curriculum Analysis

Introduction

Starting in the summer of 2004, the department of Curriculum and Instruction at Iowa State University has been offering an online Master of Education (M.Ed.) with a specialization in Curriculum and Instructional Technology degree program. The purpose of this paper was to provide a detailed curriculum analysis of this degree program. Therefore, to identify the scope and focus of the curriculum, a systematic analysis was employed using Posner’s (2004) curriculum analysis framework, which poses four sets of questions that let “the analyst tear a curriculum apart into its components” (Posner, 2004, p.18). These questions address curriculum documentation and origins; curriculum proper; curriculum in use and curriculum critique. Although the analysis was peculiar to this specific program, the results may be pertinent to similar programs and may provide a baseline for curriculum developers.

The analysis is provided in two phases. First, the curriculum of the degree program is presented so that the reader can gain a better understanding of how the program was designed and implemented. Second, the curriculum is examined in the light of Posner’s curriculum analysis framework in order to identify the strengths and weaknesses and so that suggestions for improvement could be made.
Curriculum Overview

As stated in Correia et al. (2009) the online program was designed in 2003 by the faculty members teaching the same M.Ed. program in a face-to-face format. The reason for creating an online program that mirrored the face-to-face version was to meet the needs of full time K-12 teachers who are spread across rural areas of Iowa and are not able to attend classes in a traditional university setting (Michelini & Yu, 2009).

Using a cohort approach, all students attend required courses at a distance using a variety of synchronous and asynchronous tools. However, students travel to campus for a face-to-face session at least once per semester.

At the program level, a vertical organization is used that divides the program timeline into semesters via academic years. A total of 32 credits are required for successful completion of the 3-year program. The sequence of courses is primarily fixed with the exception of 3 hours of elective credits preferably taken after the first year. The program timeline (Table 1) appears to be layered and progressive with introductory/foundational content placed early in the timeline and more specialized content (i.e. theory and research) appearing later. The organization of the program also requires a capstone course at the end of the third year of the program requiring students to develop a portfolio (CI 599B) that includes compiling both an artifact collection and writing a reflection paper.

<table>
<thead>
<tr>
<th>Year</th>
<th>Summer</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CI 615B - Instructional Technology Seminar (1 credit)</td>
<td>CI 505 - Introduction to Using Technology in Learning and Teaching (3 credits)</td>
<td>CI 507 - Principles and Practices of Distance Education (3 credits)</td>
</tr>
<tr>
<td></td>
<td>CI 501 - Foundations of Instructional Technology (3 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C 1 594 - Contemporary Curriculum Theory and Principles (3 credits)</td>
<td>C 1 503 - Designing Effective Learning Environments (3 credits)</td>
<td>C 1 515 - Action Research in Education (3 credits)</td>
</tr>
<tr>
<td>3</td>
<td>C 1 511 - Technology Diffusion, Leadership and Change (3 credits)</td>
<td>HPC 588 - History of American Education (3 credits)</td>
<td>C 1 599B - Research Development Project (3 credits)</td>
</tr>
</tbody>
</table>

Additional course work (3 credits) can be taken any time, preferably after the first year.

Total Credits: 32

Curriculum Analysis

We employed a document analysis method which included an article published by the curriculum designers, course syllabi, the program website, and recruitment brochures; as well as an interview with one key participant in the development of the curriculum. Based on the analysis, suggestions were made to improve the curriculum and overcome potential weaknesses such as offering students a more diverse and dynamic program of study based on student interests, and providing instructors with training and resources necessary to create successful online learning environments. The following is a detailed curriculum analysis of this degree program’s course of study using Posner’s (2004) Curriculum Analysis Framework.

Curriculum Documentation and Origins

Curriculum documentation and origins address issues of who develops the curriculum for what reasons, how it is planned out, and how it is affected by social, political, cultural and or economic situations (Posner, 2004). In other words, the curriculum analysis starts with revealing the story behind its development.

We based our analysis of this curriculum on five different types of resources. First, we reviewed the program’s website (http://ctlt.iastate.edu/~citmed/) to identify the purpose of the program, target audience, course schedule, tuition, and admission requirements. Second, we consulted informational and marketing materials that are used to advertise the program and present the guidelines for the creative component project that students are expected to complete at the end of their program of study. Third, we reviewed an article written by the curriculum developers that provides an overview of the program and a closer look at the courses each cohort of students are
required to take. Fourth, we consulted the Iowa State Course catalogue to gain any additional information about the required courses and their placement within their respective colleges. Fifth, we interviewed the director of the Center for Technology in Learning and Teaching who is one of the lead designers of this curriculum in order to seek any additional undocumented information that would be of relevance for this analysis.

The manner in which the available documents (i.e. website, article) were structured indicated an emphasis on the program of study, with each explaining the courses required for the degree and in what order they need to be taken. As a result, as Posner (2004) states, the developers most likely viewed this curriculum "as a series of courses that the students must get through" (p.11). It is then assumed that after students have progressed through the required courses in a pre-determined order, they will be able to use technology as teachers and leaders in their educational contexts.

The biggest limitation in terms of curriculum documentation was a lack of archived “official” documentation that could be consulted in order to gain a more in-depth analysis of the curriculum. Having to compile different types of materials that provided information in bits and pieces and draw conclusions based on this limited information was not as robust, as preferred for this analysis. Though the program website provided the most details about this curriculum, its target audience is prospective students who are most likely already interested in pursuing an online degree thereby the information it provides is somewhat narrowly focused. It would have been helpful to have access to documentation that stated the goals of the program, as well as any specific objectives outlined during the design process. Regardless, in this current program of study students are required to take pre-defined courses in a pre-determined order, but are not necessarily told why these courses were selected over others particularly since the on-campus format offers students some flexibility with course selection.

In the curriculum development process, Schwab (1971) suggests that the learners, the teachers, the subject matter and the milieu should be represented, as they are the four commonplaces of education. The developers of this current curriculum served multiple roles as teachers, subject matter experts, and educational psychologists each raising the concerns shared by Schwab (1971) in terms of over or under representation of each commonplace.

It can be argued that the learner was represented by the faculty members who were directly involved in the development process, with each possessing an extensive background in teacher education, as well as learning theory and educational psychology. Therefore, it can be assumed that their understanding of students, how they learn, and what their needs are, were likely represented.

Teachers are likely to be the best-represented group within this curriculum development team as the developers are also the ones teaching in the online program itself. Thus, they can understand the complexities of online learning, as well as the demands and constraints that might be faced during the implementation of this curriculum. Also, as experts and practitioners in the field of Instructional Technology, the developers have a strong theoretical background in how students learn with technology and what types of practices are required that may not be particularly an issue in a face-to-face classroom environment. However, not all required courses are taught by Curriculum and Instructional Technology faculty, who are already presumably interested in and qualified to take part in distance education and technology initiatives and integration, therefore the level of experience and expertise with online learning environments amongst the other instructors outside of the department vary a great deal.

Students are also required to take several courses that may not have been originally designed or taught online before. Therefore, faculty members may be asked to teach their course online primarily to best-serve the program, each of whom may not be experienced or trained to teach in this type of learning environment. As a result, some faculty members might have little theoretical and practical understanding of online learning principles, however should have been represented in the curriculum design process in order to better serve the incoming students of the program. The curriculum designers likely tried to fill this gap with the hiring and implementation of a distance education coordinator, whose purpose is to assist faculty with the development of materials and organization of their courses for this online program.

The team members also acted as the subject matter experts in the design of this curriculum. As the practitioners of the curriculum, faculty members have the theoretical and practical background about what teachers should know in order to integrate technology in a way that will improve student learning. For example, students are expected to take classes outside of their own specializations, offering them an opportunity to better conceptualize learning theories and develop professionally.

One goal this curriculum claims to meet is offering full time K-12 educators who are spread across the rural areas of Iowa and unable to attend traditional university classrooms an opportunity to pursue a continued and/or graduate education. Nevertheless, this program is not limited to Iowa teachers; anyone who meets the admission requirements may apply to the program. As a result, no one from the community it is intended to serve is represented in the curriculum development process. The curriculum developers analyzed the current educational landscape and identified a need for the program based on their own analysis. For example, Coreia et. al. (2009)
reported that the state of Iowa had a rural population of 1,337,000 out of a total 2,982,000 people. This represents a relatively high percentage of the total population and presents a potential opportunity for reaching out to both teachers and schools in remote locations.

The educational, social and political context at the time of the development of this online M.Ed. program appeared to value the role of technology in schools, and the necessity for preparing teachers with the new 21st century skills that they could then foster unto their own students. For instance, the 1997 National Council for Accreditation of Teacher Education (NCATE) reported, "[t]he nation's teacher education institutions must close the teaching and learning technology gap between where we are and where we need to be. Teacher education institutions must prepare their students to teach in tomorrow's classrooms" (p.ii). Since then there has been a growing expectation for technology integration in all levels of education, and teacher education programs have been considered to be the best and most practical places to educate pre- and in-service teachers on meaningful technology integration practices so they can foster student learning in their own classrooms.

Yet, thus far single educational technology courses have been the most common practice for technology preparation in pre-service teacher education (Hargrave & Hsu, 2000). This single stand-alone course approach may not be as effective for students in learning about what technologies they can use in their particular content areas, as it typically only provides generalized overviews of a range of technology tools (Mehler & Powers, 2002). This is also a reason for why the curriculum developers identified a need for more opportunities in Iowa for graduate education in the field of educational technology.

In regards to the design and development of the curriculum elements such as content, characteristics of audience, activities, materials, sequencing principles and evaluation, each are represented to some extent. However, the weight of each planning element was not equal in terms of the information provided by the various curriculum materials analyzed. For instance, the program website emphasizes the list and the sequence of the courses that need to be taken, which also alludes to the focus of the content (or the subject matter). The common instructional theme among all the courses is the extensive use of discussion boards, which are intended to supplant the traditional classroom discussion. These types of forums have both pitfalls (e.g. lack of nonverbal cues) and benefits (e.g. everyone has a voice, time for reflection before posting a response). In general, course materials (i.e. textbooks) are the same as what is being used in the traditional, face-to-face university setting. Evaluation varies with each course, however the most common practice appears to measure learning through project-based activities that require students to apply what they have learned into practical classroom situations.

The Curriculum Proper

The curriculum proper is concerned with the purpose and content of the curriculum and what assumptions each imply (Posner, 2004). Our analysis indicated that an assumed overarching goal of this program is to encourage students to use technology in their own educational situations or contexts so that they can foster learning and provide opportunities for their students to develop skill sets that will help them be successful in the future. After students have completed the required course work and creative component, it is assumed that they will be prepared to apply many of the technology integration concepts learned into their own classrooms.

With limited documentation, it is very difficult to identify an explicitly stated purpose associated with the curriculum. The only statement that can be regarded as a potential purpose statement is provided on the program website. It states "The Master of Education in Curriculum and Instructional Technology program is designed for teachers and other educators to engage in professional development in their knowledge of subject matter, teaching, and technology by incorporating contemporary tools and resources" (Michelini & Yu, 2009). Despite its brevity, this statement encapsulates all four categories (i.e. personal development, socialization, economic productivity, further learning) of educational aims (Posner, 2004).

Professional development is directly related to personal development where students will hopefully improve both their technical skills (training) and effective technology integration (education). Correia et. al. (2009) state that students are grouped into cohorts in order to create a supportive and collegial environment that is directly related to the socialization aspect of education. However, it also should be noted that socialization in an online environment is quite different than face-to-face environments. The physical distance between the students and the instructor can hinder effective communication since it is essentially dependent on a different, and less-used skill sets. This is why the continuity of a cohort format is considered to be so important in online learning (Correia et. al., 2009).

Economic productivity is primarily related to acquiring job skills in the students target area. Although most students are already full time teachers, earning a Masters degree often provides them opportunities for advancement
and future career options. For example, one graduate stated, "While working toward my masters’ degree I applied and accepted my current job at the Area Education Agency ... my background and masters in technology is extremely valuable" (Correia et. al., 2009). Finally, further learning is one of the basic aims of the program. Namely, it is impossible to teach all the available technologies that can be used in different content areas, or to guess what changes and improvements in technology will happen in coming years. Instead, this curriculum offers students the theoretical framework that will help them explore what is available and what could be done in their own classrooms.

Also, what type of learning objectives are included or emphasized in the curriculum might give an idea about the approach developers took in developing this program. In particular, the learning objectives are represented at the course-level through the individual course syllabi. However, some are presented in a way that cannot be identified fairly easily as individual or personalized learning objectives. Namely, many learning objectives are tangled amongst course overviews and educational goals listed on course-related documentation. For example, three course syllabi (chosen based on availability) were analyzed to find what learning objectives are included and emphasized as representative of the curriculum. For example, the HPC 588 course description (See Appendix A) presents just one overall learning objective after listing the topics that will be covered in the course.

The CI 511 course overview (See Appendix B) is also designed in a similar fashion to the HPC syllabus. After briefly listing the content that will be covered, the instructor concludes with a sentence that summarizes what students will have learned at the end of the course. However, in this example, there is also an emphasis on the application of skills (e.g. providing leadership) in relation to Bloom's (1956) taxonomy of application in the cognitive domain. However, skills like leadership are often not gained by following a “recipe” type of instruction. Students should draw their own conclusions based on their conceptual knowledge acquired throughout the course, and their own attitudes towards how to be leaders in technology integration using their cognitive strategies (Gagne, 1977).

The CI 505 course purpose and approach (See Appendix C), which utilizes a more application-based approach to instruction, also does not provide well-defined learning objectives. The approach that the instructor has taken also reflects a combination of intellectual and skills knowledge as students are expected to apply the conceptual knowledge they have gained and create classroom activities for their learners.

Overall, we can conclude that the curriculum developers do not follow any specific educational psychology model (e.g. Bloom, Gagne, Ryle) in developing their objectives. Rather, they use a combination where they can emphasize what they consider important for their target students, based on each specific course. Each of the course descriptions or overviews appear to be exactly the same as their face-to-face equivalent, resulting in the instructors to continue aiming towards achieving the same educational objectives, despite the course being offered through a different medium. As a result, students complete similar assignments and learn similar material in almost the same amount of time regardless of the medium.

The manner in which the subject matter is represented in the curriculum indicates more of a pedagogical, than behavioral focus. The required classes in the curriculum covers both theoretical foundations (e.g. how people learn) and practical applications (e.g. designing an instructional unit), so it can be concluded that this curriculum conceives of Curriculum and Instructional Technology as a combination of theory and practice. In some courses, the focus is more on theory (e.g. HPC) while in others there is more of a balance between theory and application. For example, in CI 505 after students learn how and why wikis can be used in educational settings, they design a learning activity using this specific technology. This combination of theory and practice indicates a pedagogical agenda that technology needs to be used as an aid to foster student learning rather than being a controlling factor. This emphasizes the point that, in none of the classes offered throughout the program will you find learning about a specific technology taught as an isolated skill. Students are encouraged to explore their options and develop technical skills by working on technology integrated projects, which ideally accomplishes the primary goal of creating similar environments for their own students.

Most content is usually presented through forum discussions and project-based assignments. In all courses, students discuss assigned readings in an asynchronous forum discussion, and complete assignments to show their understanding of the material. Hence, using this approach the instructor takes on a secondary role in the learning environment; however, this does not mean that they do not have influence on what is being learned. Instructors also participate in the discussions, and assist students in co-constructing knowledge, yet the format can limit their ability to interfere when they see a problem in student learning. However, some topics may require explicit teacher lecturing, which can be problematic in online environments. As a solution to this problem, one instructor records PowerPoint presentations with audio tracks and uploads them to a course management system (Correia et. al., 2009). However, thought this may seem like a plausible solution, it still lacks student-to-student/student-to-teacher interaction that a face-to-face classroom provides which is a key aspect to learning. Likewise, an online presence
students of the program also suggest that as a result of good online course design it has allowed them to be
perception, developers focus on the relatively high retention and graduation rates achieved by the program. Several aspects of a hidden curriculum that are not directly addressed in the "official" curriculum. Learning (through readings, discussions, projects), as well as ethical (i.e. cheating) and professional guidelines are all
Being a part of an online community, being able to effectively manage their time, being responsible for their own
regularly scheduled time and place for class, they do have to participate and contribute in other meaningful ways.
students to be self-directed, motivated, and effective time managers. Though they do not have to commit to a
receive as a result of being associated with an online degree program. As part of an effort to deemphasize this
A common implication related to online learning is the perceived lower quality of education that students
and how. Also, as required in most courses, they are expected to comment on their peer’s entries and ultimately
connections about what they learn in the courses (in terms of both theory and practice) and their own teaching
students reflect on readings, comment on each other’s ideas, and participate in a collaborative learning environment (Correia, et. al. 2009). In such environments, as Resnick (1983) suggests, rather than passively receiving information, students construct ideas and generate meaning through engaging in reflective discussions. Since most students are practicing teachers, they have preconceptions about their profession and are expected to make connections about what they learn in the courses (in terms of both theory and practice) and their own teaching experiences.
Social interaction is another important element central to learning (Resnick, 1983) via this curriculum. It provides opportunities for students to work collaboratively, engage in constructive criticism, as well as reflect on and revise their own ideas (Posner, 2004). In online classes, most students are aware that their peers will see their contributions, so it is highly likely that they will pay more attention to detail regarding what information they share and how. Also, as required in most courses, they are expected to comment on their peer’s entries and ultimately build towards creating a structured, co-constructed knowledge base.
Overall, it might be concluded that a constructivist perspective seems to dominate how learning and teaching is viewed in this program, as well as how activities are structured. However, rather than a conceptual change model, it is closer to a cognitive apprenticeship model where students engage in real life tasks in a contextualized manner with on-demand help by instructors.
In addition to content learning, online learning contributes students’ self-development, as it requires students to be self-directed, motivated, and effective time managers. Though they do not have to commit to a regularly scheduled time and place for class, they do have to participate and contribute in other meaningful ways. Being a part of an online community, being able to effectively manage their time, being responsible for their own learning (through readings, discussions, projects), as well as ethical (i.e. cheating) and professional guidelines are all aspects of a hidden curriculum that are not directly addressed in the “official” curriculum.
A common implication related to online learning is the perceived lower quality of education that students receive as a result of being associated with an online degree program. As part of an effort to deemphasize this perception, developers focus on the relatively high retention and graduation rates achieved by the program. Several students of the program also suggest that as a result of good online course design it has allowed them to be successful (Correia, et. al, 2009):
“I have found this to be much more engaging and meaningful than meeting in person in most of my undergrad courses. I really like being able to participate in a discussion, but having the time to really think through things before ‘opening’ my mouth, so to speak. Also, there is almost more accountability with a course like this than with a traditional course.”

The Curriculum In Use

The curriculum in use is related to how teachers interpret and put the official curriculum into operation. Throughout this implementation process, they need to take many frame factors--physical, cultural, temporal, economic, organizational, political-legal, and personal characteristics--into consideration. These factors might either hinder or facilitate the implementation of the curriculum (Posner, 2004).

In terms of temporal factors, the flexible nature of this online program essentially makes each course a 24/7 commitment for a student to be engaged each semester. There is less structure around most asynchronous communication formats with the exception of deadlines. Each course is part of a full-time professor’s teaching load and is delivered based on his or her own design and preference.

Physical factors play a different role in online teaching environments. Although they do not require walls and chairs, other tools that would facilitate the learning experience are needed. In this particular curriculum, with the exception of a brief face-to-face meeting associated with some courses, the commitment of any indoor or outdoor facilities is minimal. However, the technological requirements for participating in online courses is much more demanding. It is expected that each student has access to the required equipment associated with each course, which are often already available at most public libraries and universities. It is assumed that the department is already fully equipped to administer this program and students must be prepared for or gain access to the necessary and compatible equipment that may extend beyond a desktop or laptop computer (i.e. webcam, microphone, video conference software/site, etc.).

Regarding the organizational frames, this program does employ a full-time distance education coordinator that serves as a technical support specialist and provides assistance with the acquisition of any specific technical requirements associated with each course. The nature of this program requires a wide range of technologies as both delivery mechanisms and subject matter. A student’s ability to seek resources and assistance, from both inside and outside of the university and department when necessary is critical to their success.

Political-legal factors refer to the impact of outside organizations have on the curriculum. For the particular curriculum under analysis, in addition to the accreditation offered by the department, University and state, the courses associated with this program are also affiliated with the traditional M.Ed. graduate program. A limited number of students not associated with this program are able to enroll and participate in these courses for credit towards their own respective programs. These courses are met with the same rigor and valued the same as all other graduate level courses offered. As a result, the associated costs with the implementation of this curriculum range a great deal. First, a staff position (i.e. distance education coordinator) is dedicated to supporting this program. Second, faculty planning and preparation time will vary from traditional implementations of the same course. Third, technical resources must be updated (if necessary) to accommodate the distance education initiatives that each course demands.

In terms of consistency with the teachers’ attitudes, beliefs and competencies this curriculum has the advantage of instructors being the developers as well. Most faculty associated with the program have had experience teaching in both traditional and online environments; as well as worked with various technologies in the past, utilizing them to the best of their abilities. However, no formal training associated with online learning and course development is offered to faculty in their preparation for teaching in this program. The staff development necessary to support this program is focused around the distance education coordinator’s role, as well as all other university-wide support services. The expectation that all faculty members are of equal technical ability is unrealistic. However, it is assumed that they will seek and receive the appropriate assistance necessary to maintain the effectiveness of their course design and delivery.

Most technologies are already available and accessible to both faculty and students. It is expected that students who enroll in distance education programs have access to some level of technology appropriate for completing the associated coursework. Often a course management software solution is complemented with other technologies used at the discretion of the faculty member.

Mastery of specific technologies are not required to meet the expectations of this program, instead representing how technology can be used to enhance learning is valued. This is expected through the demonstration of leadership, competence, creativity, and understanding of a particular subject matter. Based on how each course is
designed, the proper resources and assistance must then be coordinated. The role of the distance education coordinator or the utilization of other university-wide resources is critical in meeting this need.

When considering students’ cultural, ethnic or social backgrounds, this program assumes that each student has the ability to effectively participate in an online learning environment. First, students are expected to be able to overcome or accommodate any language or communication barriers associated with an online learning format. This can be especially difficult when both visual and non-visual cues are often relied upon when communicating in order to decode or interpret what and how information is being shared (i.e. the use of slang or acronyms). Second, the practice of “netiquette” is an important component to online learning that all students should consider. Often, common communication characteristics such as tone, expression, physical gestures, etc. are lost in online learning environments which require careful scripting of how and in what manner students share and express their thoughts and opinions. Third, in order to participate in online learning environments certain levels of economical and technical resources are assumed. Though ownership of the various technical aspects required may not be necessary, students are expected to have reliable, consistent and frequent access to the tools necessary to fully participate and contribute in the courses. The value placed on repeated student-to-student/student-to-teacher interactions is great and essential to each course’s success.

Though this curriculum remains a fairly new and popular program of study, several collaborative approaches are a part of its continued modification efforts. First, with the direction of curriculum change being handled by faculty members within the program, the potential for biased or discrete influences remains a possibility. However, the curricular focus appears to rest around meeting each instructor’s teaching and learning beliefs.

Second, the necessity for teacher growth to occur “by doing” and learning from their peers is also a factor in how courses are taught. The nature of online learning will most likely impact what courses are offered within this program, as well as who is best qualified to teach them with respect to both the content area and online learning principles. Any course a faculty member teaches within this program is included as part of their assigned teaching load with the expectation that they invest the time necessary to offer a successful course.

Third, the ethnographic approach to how students are evaluated also influences the basic structure and change expectations for this program of study. The subjective nature of reflecting on and aligning program artifacts to a set of standards remains the primary benchmark to measuring the effectiveness of the program itself. The CI 599B portfolio course is purposefully placed at the end of a student’s program of study and designed as an outlet for them to express their own point of view of their total body of work and how it relates to their goals as a practitioner as suggested by Posner (2004). This reflection and demonstration is then evaluated by the faculty’s point of view and their interpretation of what academic growth and competency should look like after participating in this course of study. The reconciliation of the two viewpoints then allows for both faculty and students to validate their experiences in the program and measure their level of effectiveness.

In terms of evaluation of the curriculum, there was little access to data related to this program with the exception of some student feedback, as well as retention and graduation rates. As a result of this minimal dataset, strong conclusions are difficult to draw. However, based on the two previous cohorts who participated in this program the following retention and graduation rates are as follows:

Students beginning in the 2004 Cohort:
- Retention: 88% Persistence
- Graduation: 7 out of 8 receiving the Masters of Education degree

Students beginning in the 2006 Cohort:
- Retention: 92% Persistence
- Graduation: 12 out of 13 receiving the Masters of Education degree

The evaluation method used by this curriculum is likely to be a flexible and action-oriented approach. It advertises itself as being an applicable and adaptable graduate program that accounts for the flexibility and dynamic nature of the working professional. The emphasis placed on student-centered learning and relating coursework to individual situations makes it very difficult for a highly measurement-based evaluation to occur.

One outcome concern we continue to have in relation to this curriculum is assessing student-learning gains, versus those who are enrolled in similar, but more traditional graduate programs. Obviously there are a variety of conditional factors that must be considered when attempting to adequately compare the two programs such as equality in student ability, prior knowledge/experiences and the influence a cohort format may have on learning. Ideally, this type of evaluation data could be used in comparing and analyzing how effective information is being shared and later applied by each respective group of students. Though retention and graduation percentages could potentially mark the success of a degree program, a true assessment of work quality and student competency may also be advantageous in verifying if an online learning program is truly beneficial as opposed to its face-to-face counterpart, or vice versa.
Critique and Suggested Revisions

There are numerous strengths and weaknesses associated with this curriculum. First, its strengths include flexibility for serving a greater student population, utilizing a cohort format, and courses taught by full-time faculty.

One of the greatest advantages of online learning and this program is its ability to provide educational opportunities to potential students who might not otherwise attend a traditional University setting for reasons such as geographical, career, family, etc. The flexibility to take classes no matter where you are located in the world during a time that is most convenient to you is a very appealing endeavor for a prospective student, as well as offers an entrepreneurial opportunity for a University to expand its student body. This curriculum is able to offer many of the same graduate-level courses, performance rigor and University accreditation as its face-to-face counterpart with the addition of providing students the option of being enrolled at a distance.

The use of student cohorts is also a potential strength of this program. Since this curriculum is primarily evaluated based on retention and graduation rates, any attempt at enhancing these numbers should be considered an asset. Since most online learning environments can appear to be anonymous and lack a social connection, students are forced to find some type of relationship with a course that encourages them to stay engaged and actively participate. Taking advantage of this program’s highly structured program of study makes it possible for a group of students to enter and progress through as a single “class” thereby making it easier for students to make connections with their peers on a repeated basis over several semesters. However, just as this attempt at student continuity can provide a benefit to academic performance, the incestuous nature of the same experiences and ideas being shared over 3 academic years can also be detrimental. Recognizing this, several students who are not part of the program are allowed to enroll in each online course for the purpose of keeping the classes diverse and dynamic in what information is shared and discussed (Correia, et al., 2009).

Another strength of this program is having the opportunity to work with full-time faculty members who often teach both the face-to-face and online versions of the same course. Hence, online students are not placed at a disadvantage in terms of learning from experts in their respective fields of study. Overcoming the perception that instructors are less than adequate in online courses and that little interaction is ever had amongst students and faculty is critical in ensuring that students of this program are receiving the highest quality of education possible. As stated earlier, since this online program mirrors the face-to-face program and students often learn the very same things that on-campus students do, the program director stated that teaching online has “unofficially” made their face-to-face classes more effective (personal communication). Teaching the same course in two very diverse media forces the instructors to think about their courses differently, as well as how to communicate and employ various instructional techniques. This comprehensive look into their own pedagogy and course material has the potential to make instructors more aware of their own actions and identifying the most effective ways to illustrate or share information.

Next, as part of this curriculum’s weaknesses and suggested revisions includes it’s rigid course structure (possible solution: provide students more course options) and lack of teacher training in online teaching (possible solution: offering training to all involved faculty).

Though a student cohort system may work very well in an environment that students are already at a disadvantage in getting to know each other, and much of what makes so many online degree programs so popular is its flexible nature in completing courses from a distance the two are difficult to mix. An example of this inflexibility and limitation to being a part of this program is the restriction in what and when students can take various courses. All of the required courses for completing this program are offered once per academic year. This makes it very difficult for students to seek and substitute course alternatives or step away from the program for a period time (i.e. semesters) without penalty. Ironically, though an advantage of enrolling in an online degree program is flexibility, the nature of fixed course scheduling limits it a great deal. In the traditional, face-to-face M.Ed. program students are able to customize and choose courses with much greater ease. This is because of both the lack of schedule rigidity and cohort formatting. For example, in the face-to-face program students are given the option of choosing one of the several courses in the educational leadership area. However, in the online version they lack that option and are limited to only one course. Though each course was likely chosen on the basis of current student characteristics and needs of the target audience, these pre-defined course decisions limit a student’s freedom in designing their own program of study.

Another weakness associated with this curriculum is the lack of training provided to faculty members teaching in online environments. Teaching online is neither easier, nor takes less time than face-to-face instruction. Rather, it requires careful planning and detailed course design that provokes and facilitates meaningful discussions, activities, projects. Regardless of the amount of teaching experience in traditional learning environments, developing the skills and characteristics associated online course development and instruction can be challenging.
and time consuming. Hence, a training module for online teaching strategies offered to the faculty members involved with this curriculum is needed. Just as this curriculum prioritizes the success of its students, preparing and offering faculty members the resources necessary to develop and implement effective online instruction should also be highly valued.

Conclusion

As the phenomenon of online learning remains both a popular trend and challenging aspect of educational quality this curriculum has many promising characteristics moving forward as a result of this analysis. The priority now rests with overcoming potential weaknesses with possible solutions such as; offering students a more diverse and dynamic program of study based on their interests, as well as providing instructors the training and resources necessary to create just as successful online learning environments as face-to-face. Despite this program’s continued growth and perceived success, the challenges of online education remain to be ongoing.

References

Appendix A

HPC 588 Course Description and Objectives
This course explores the goals, purposes and problems of formal education, primarily at the elementary and secondary levels, in the United States from the colonial period to the present. We will utilize both primary and secondary sources to investigate topics including: varied localized approaches to education during the colonial period and the early republic: the movement for common schools: the "feminization" of the teaching profession: the rise of the public high school: nineteenth-century forms of race and gender segregation: the growth of educational bureaucracy and vocational education; Depression and Cold War reforms; the desegregation struggle; and increasing federal-government involvement in education. Throughout, we will explore the connection between educational policies and larger social, political, economic and cultural developments. As a result, students will gain a better understanding of the origins and evolution of various current educational practices, policies, issues and dilemmas. (Fairchild, 2008).

Appendix B

CI 511 Course Overview
The purpose of this course is to explore the ways that information age technologies (broadly defined to include computers and related devices, as well as the Internet and other tools and applications) have been integrated into schooling contexts. We will begin by exploring a general model that addresses how innovations are diffused and adopted. We will then focus our attention on how educational change occurs. Finally, we will look at an example of how a particular innovation (use of computers) diffused into educational settings. Studying these perspectives will help us better understand how technology integration is occurring in each of our individual contexts, and to provide leadership to help make the integration process more efficient and effective. (Niederhauser, 2008).

Appendix C

CI 505 Purpose
The purpose of the course is to acquaint the student with current educational applications of digital technologies in teaching and connections of these applications to contemporary learning theory. Emphasis will be placed on both the "how" and "why" of using digital technology in classrooms. Integrating digital technology to improve instruction and create students centered classrooms will be the central theme of the course. In the course, students will be encouraged to connect current learning theory the creation of digital technology classroom activities for students (Thompson, 2009).

CI 505 Approach
This class will be structured using a combination of resources, discussion and student presentations. The course is project-based and almost every week, at the beginning of the semester, students will be asked to create a project (usually a student activity) around a particular topic. Each week, students will receive an agenda for the week and an assignment due at the beginning of the following week in class. The course will use a WebCT site that is used for communication, discussion, sharing resources, student grade information, and course information. In addition, we will use a course Facebook site for communications and teacher/student reflections (Thompson, 2009).