SYSTEMS INQUIRY AND ITS APPLICATION
IN EDUCATION

Bela H. Banathy
Saybrook Graduate School and Research Center

Patrick M. Jenlink
Stephen Austin University

2.1 PART 1: SYSTEMS INQUIRY

The first part of this chapter is a review of the evolution of the systems movement and a discussion of human systems inquiry.

2.1.1 A Definition of Systems Inquiry

Systems inquiry incorporates three interrelated domains of disciplined inquiry: systems theory, systems philosophy, and systems methodology. Bertalanffy (1968) notes that in contrast with the analytical, reductionist, and linear-causal paradigm of classical science, systems philosophy brings forth a reorientation of thought and worldview, manifested by an expansionist, nonlinear dynamic, and synthetic mode of thinking. The scientific exploration of systems theories and the development of systems theories in the various sciences have brought forth a general theory of systems, a set of interrelated concepts and principles, applying to all systems. Systems methodology provides us with a set of models, strategies, methods, and tools that instrumentalize systems theory and philosophy in analysis, design, development, and management of complex systems.

2.1.1.1 Systems Theory. During the early 1950s, the basic concepts and principles of a general theory of systems were set forth by such pioneers of the systems movement as Ashby, Bertalanffy, Boulding, Fagen, Gerard, Rappaport, and Wiener. They came from a variety of disciplines and fields of study. They shared and articulated a common conviction: the unified nature of reality. They recognized a compelling need for a unified disciplined inquiry in understanding and dealing with increasing complexities, complexities that are beyond the competence of any single discipline. As a result, they developed a transdisciplinary perspective that emphasized the intrinsic order and interdependence of the world in all its manifestations. From their work emerged systems theory, the science of complexity. In defining systems theory, we review the key ideas of Bertalanffy and Boulding, two of the founders of the Society for the Advancement of General Systems Theory. Later, the name of the society was changed to the Society for General Systems Research, then the International Society for Systems Research, and recently to the International Society for the Systems Sciences.

2.1.1.1 Bertalanffy (1956, pp. 1-10). Examining modern science, Bertalanffy suggested that it is 'characterized by its ever-increasing specialization, necessitated by the enormous amount of data, the complexity of techniques, and structures within every field.' This, however, led to a breakdown of science as an integrated realm. "Scientists, operating in the various disciplines, are encapsulated in their private universe, and it is difficult to get word from one cocoon to the other." Against this background, he observes a remarkable development, namely, that 'similar general viewpoints and conceptions have appeared in very different fields.' Revising this development in those fields, Bertalanffy suggests that there exist models, principles, and laws that can be generalized across various systems, their
components, and the relationships among them. "It seems legitimate to ask for a theory, not of systems of a more or less special kind, but of universal principles applying to systems in general."

The first consequence of this approach is the recognition of the existence of systems properties that are general and structural similarities or isomorphies in different fields.

There are correspondences in the principles, which govern the behavior of entities that are intrinsically widely different. These correspondences are due to the fact that they all can be considered, in certain aspects, "systems" that is, complexes of elements standing in interaction. It seems that a general theory of systems would be a useful tool providing, on the one hand, models that can be used in, and transferred to, different fields, and safeguarding, on the other hand, from vague analogies which often have marred the progress in these fields.

The second consequence of the idea of a general theory is to deal with organized complexity, which is a main problem of modern science.

Concepts like those of organization, wholeness, directiveness, teleology, control, self-regulation, differentiation, and the likes are alien to conventional science. However, they pop up everywhere in the biological, behavioral, and social sciences and are, in fact, indispensable for dealing with living organisms or social groups. Thus, a basic problem posed to modern science is a general theory of organization. General Systems Theory (GST) is, in principle, capable of giving exact definitions for such concepts.

Thirdly, Bertalanffy (1956) suggested that it is important to say what a general theory of systems is not. It is not identical with the triviality of mathematics of some sort that can be applied to any sort of problems; instead "it poses special problems that are far from being trivial." It is not a search for superficial analogies between physical, biological, and social systems. The isomorphy we have mentioned is a consequence of the fact that, in certain aspects, corresponding abstractions and conceptual models can be applied to different phenomena. It is only in view of these aspects that system laws apply.

Bertalanffy (1956) summarizes the aims of a general theory of systems as follows:

(a) There is a general tendency toward integration in the various sciences, natural and social.
(b) Such integration seems to be centered in a general theory of systems.
(c) Such a theory may be an important means of aiming at exact theory in the nonphysical fields of science.
(d) Developing unifying principles running "vertically" through the universe of the individual sciences, this theory brings us nearer to the goal of the unity of sciences.
(e) This can lead to a much needed integration in scientific education.

Commenting later on education, Bertalanffy noted that education treats the various scientific disciplines as separate domains, where increasingly smaller subdomains become separate sciences, unconnected with the rest. In contrast, the educational demands of scientific generalists and developing transdisciplinary basic principles are precisely those that GST tries to fill. In this sense, GST seems to make important headway toward transdisciplinary synthesis and integrated education.

2.1.1.2 Boulding (1956, pp. 11–17). Examining the state of systems science, Boulding underscored the need for a general theory of systems, because in recent years increasing need has been felt for a body of theoretical constructs that will discuss the general relationships of the empirical world. This is, as Boulding noted, the quest of General Systems Theory (GST). It does not seek, of course, to establish a single, self-contained "general theory of practically everything," which will replace all the special theories of particular disciplines. Such a theory would be almost without content, and all we can say about practically everything is almost nothing.

Somewhere between the specific that has no meaning and the general that has no content there must be, for each purpose and at each level of abstraction, an optimum degree of generality.

The objectives of GST, then, can be set out with varying degrees of ambitions and confidence. At a low level of ambition, but with a high degree of confidence, it aims to point out similarities in the theoretical constructions of different disciplines, where these exist, and to develop theoretical models having applicability to different fields of study. At a higher level of ambition, but perhaps with a lower level of confidence, it hopes to develop something like a "spectrum" of theories—a system of systems that may perform a "gestalt" in theoretical constructions. It is the main objective of GST, says Boulding, to develop "generalized ears" that overcome the "specialized deafness" of the specific disciplines, meaning that someone who ought to know something that someone else knows isn't able to find it out for lack of generalized ears. Developing a framework of a general theory will enable the specialist to catch relevant communications from others.

In the subtitle, and later in the closing section of his paper, Boulding referred to GST as "the skeleton of science." It is a skeleton in the sense, he says, that:

It aims to provide a framework or structure of systems on which to hang the flesh and blood of particular disciplines and particular subject matters in an orderly and coherent corpus of knowledge. It is also, however, something of a skeleton in a cupboard—the cupboard in this case being the unwillingness of science to admit the tendency to shut the door on problems and subject matters which do not fit easily into simple mechanical schemes. Science, for all its success, still has a very long way to go. GST may at times be an embarrassment in pointing out how very far we still have to go, and in debasing excessive philosophical claims for overly simple systems. It also may be helpful, however, in pointing out to some extent where we have to go. The skeleton must come out of the cupboards before its dry bones can live.

The two papers introduced above set forth the "vision" of the systems movement. That vision still guides us today. At this point it seems to be appropriate to tell the story that marks the genesis of the systems movement. Kenneth Boulding told
2. Systems Inquiry in Education

2.1.1.2 Systems Philosophy. The next main branch of systems inquiry is systems philosophy. Systems philosophy is concerned with a systems view of the world and the elucidation of systems thinking as an approach to theoretical and real-world problems. Systems philosophy seeks to uncover the most general assumptions lying at the roots of any and all of systems inquiry. An articulation of these assumptions gives systems inquiry coherence and internal consistency. Systems philosophy (Laudz, 1972) seeks to probe the basic texture and ultimate implications of systems inquiry. It ‘guides the imagination of the systems scientist and provides a general world view, the likes of which—in the history of science—has proven to be the most significant for asking the right question and perceiving the relevant state of affairs’ (p. 10). The general scientific nature of systems inquiry implies its direct association with philosophy. This explains the philosophers’ early and continuing interest in systems theory and the early and continuing interest of systems theorists and methodologists in the philosophical aspects of systems inquiry. In general, philosophical aspects are worked out in three directions. The first involves inquiry into what things are, what a person or a society is, and what kind of world we live in. These questions pertain to what we call ontology. The second direction focuses on the question: How do we know whatever we know? How do we know what kind of world we live in and what kind of organisms we are? What sort of thing is the mind? Bateson (1972) notes that originating from systems theory, extraordinary advances have been made in answering these questions. The ancient question of whether the mind is immanent or transcendent can be answered in favor of immanence. Furthermore, any ongoing ensemble (system) that has the appropriate complexity of causal and energy relationships will (a) show mutual characteristics, (b) compare and respond to differences, (c) process information, (d) be self-corrective, and (e) no part of an internally organized relationship processes between entities (of systems), from which emerge the novel properties of systems.

2.1.1.2.2 Epistemology. This philosophical aspect deals with general questions: How do we know whatever we know? How do we know what kind of world we live in and what kind of organisms we are? What sort of thing is the mind? Bateson (1972) notes that originating from systems theory, extraordinary advances have been made in answering these questions. The ancient question of whether the mind is immanent or transcendent can be answered in favor of immanence. Furthermore, any ongoing ensemble (system) that has the appropriate complexity of causal and energy relationships will (a) show mutual characteristics, (b) compare and respond to differences, (c) process information, (d) be self-corrective, and (e) no part of an internally organized system can exercise unilateral control over other parts of the system. ‘The mental characteristics of a system are immanent not in some part, but in the system as a whole’ (p. 316). The epistemological aspects of systems philosophy address (a) the principles of how systems inquiry is conducted, (b) the specific categorical apparatus of the inquiry, and that connected with it, and (c) the theoretical language of systems science. The most significant guiding principle of systems inquiry is that of giving prominence to synthesis, not only as the culminating ac-

This story at the occasion when Bala Banathy was privileged to present to him the distinguished scholarship award of the Society of General Systems Research at our 1983 Annual Meeting.

The year was 1954. At the Center for Behavioral Sciences, at Stanford University, four Center Fellows—Bertalanffy (biology), Boulding (economics), Gerard (psychology), and Rappoport (mathematics)—had a discussion in a meeting room. Another Center Fellow walked in and asked: ‘What's going on here?’ Ken answered: ‘We are angered about the state of the human condition and ask: “What's going on here?”’ What can we—what can science—do about improving the human condition? ’ ‘Oh!’ their visitor said. ‘This is not my field.’…’ At that meeting the four scientists felt that in the statement of their visitor they heard the statement of the fragmented disciplines that have little concern for doing anything practical about the fate of humanity. So, they asked themselves, ‘What would happen if science would be redefined by crossing disciplinary boundaries and forge a general theory that would bring us together in the service of humanity?’ Later they went to Berkeley, to the annual meeting of the American Association for the Advancement of Science, and during that meeting established the Society for the Advancement of General Systems Theory.

Throughout the years, many of us in the systems movement have continued to ask the question: How can systems science serve humanity?
aesthetics guided by the radical questions. What is good? What is right? What is moral? What is elegant or beautiful? These questions directly fund the moral responsibility and practice of systems inquiry. Values, morals, ethics, aesthetics (elegance and beauty) are primary considerations in systems inquiry. Individuals and collectives engaged in systems inquiry must ask those questions that seek to examine, find, and understand a common ground from which the inquiry takes direction. Jantsch (1980) notes, in examining morality and ethics, that

The direct living experience of morality becomes expressed in the form of ethics—it becomes form in the same way in which biological experience becomes form in the genetic code. The stored ethical information is then selectively retrieved and applied in the moral process in actual life situations. (p. 264)

The axiological concern of systems philosophy is to ensure that systems inquiry is moral and ethical, and that those individuals/collectives who participate in systems inquiry are constantly questioning the implications of their actions. Human systems inquiry, as Churchman (1971, 1979, 1982) has stated, must be value oriented, and it must be guided by the social imperative, which dictates that technological efficiency must be subordinated to social efficiency. He speaks for a science of values and the development of methods by which to verify ethical judgments. Churchman (1982) explains that ‘ethics is an eternal conversation, its conversation retains its aesthetic quality if human values are regarded as neither relative or absolute’ (p. 57). The methods and tools selected for the systems inquiry, as well as the epistemological and ontological processes that guide systems inquiry, work to determine what is valued, what is good and aesthetic, what is morally acceptable. Whereas traditional science is distanced from axiological considerations, systems philosophy in the context of social systems and systems inquiry embraces this moral/ethical dimension as a crucial and defining characteristic of the inquiry process.

2.1.1.3 Systems Methodology. Systems methodology—a vital part of systems inquiry—has two domains of inquiry: (1) the study of methods in systems investigations by which we generate knowledge about systems in general and (2) the identification and description of strategies, models, methods, and tools for the application of systems theory and systems thinking for working with complex systems. In the context of this second domain, systems methodology is a set of coherent and related methods and tools applicable to (a) the analysis of systems and systems problems, problems concerned with the systemic/relational aspects of complex systems; (b) the design, development, implementation, and evaluation of complex systems; and (c) the management of systems and the management of change in systems.

The task of those using systems methodology in a given context is fourfold: (1) to identify, characterize, and classify the nature of the problem situation, i.e., (a), (b), or (c) above; (2) to identify and characterize the problem context and content in which the methodology is applied; (3) to identify and characterize the type of system in which the problem situation is embedded; and (4) to select specific strategies, methods, and tools that are appropriate to the nature of the problem situation, to the context/content, and to the type of systems in which the problem situation is located.

The brief discussion above highlights the difference between the methodology of systems inquiry and the methodology of scientific inquiry in the various disciplines. The methodology of a discipline is clearly defined and is to be adhered to rigorously. It is the methodology that is the hallmark of a discipline. In systems inquiry, on the other hand, one selects methods and methodological tools or approaches that best fit the nature of the identified problem situation, and the context, the content, and the type of system that is the domain of the investigation. The methodology is to be selected from a wide range of systems methods that are available to us.

2.1.2 Evolution of the Systems Movement

Throughout the evolution of humanity there has been a constant yearning for understanding the wholeness of the human experience that manifests itself in the wholeness of the human being and the human society. Wholeness has been sought also in the disciplined inquiry of science as a way of searching for the unity of science and a unified theory of the universe. This search reaches back through the ages into the golden age of Greek philosophy and science in Plato’s ‘kybernetics,’ the art of steermanship, which is the origin of modern cybernetics—a domain of contemporary systems thinking. The search intensified during the Age of Enlightenment and the Age of Reason and Certainty, and it was manifested in the clockwork mechanistic world view. The search has continued in the current age of uncertainty (Heisenberg, 1930) and the sciences of complexity (Nicolis & Prigogine, 1989; Prigogine, 1980), chaos (Gleick, 1987), relativity (general and special) (Einstein, 1955, 1959), quantum theory (Shrödinger, 1956, 1995), and the theory of wholeness and the implicate order (Bohm, 1995).

In recent years, the major player in this search has been the systems movement. The genesis of the movement can be timed
as the mid-1950s (as discussed at the beginning of this chapter). But prior to that time, we can account for the emergence of the systems idea through the work of several philosophers and scientist.

2.1.2 The Pioneers. Some of the key notions of systems theory were articulated by the 18th-century German philosopher Hegel. He suggested that the whole is more than the sum of its parts, that the whole determines the nature of the parts, and the parts are dynamically interrelated and cannot be understood in isolation from the whole.

Most likely, the first person who used the term general theory of systems was the Hungarian philosopher and scientist Bela Zalai. Zalai, during the years 1913 to 1914, developed his theory in a collection of papers called A Rendszerek Alaltanos Elmelete. The German translation was entitled Allgemeine Theorie der Systeme (General Theory of Systems). The work was re-published (Zalai, 1984) in Hungarian and was recently reviewed in English (Barathy & Barathy, 1989). In a three-volume treatise, Tektologia, Bogdanov (1921–1927), a Russian scientist, characterized Tektologia as a dynamic science of complex wholes, concerned with universal structural regularities, general types of systems, the general laws of their transformation, and the basic laws of organization. Bogdanov’s work was published in English by Golerik (1980).

In the decades prior to and during World War II, the search intensified. The idea of a General Systems Theory was developed by Bertalanffy in the late 1930s and was presented in various lectures. But his material remained unpublished until 1945 (Zu einer allgemeinen Systemlehre) followed by An Outline of General Systems Theory (1951). Without using the term GST, the same frame of thinking was used in various articles by Ashby during the years 1945 and 1947, published in his book Design for a Brain, in 1952.

2.1.2.2 Organized Developments. In contrast with the work of individual scientists, outlined above, since the 1940s we can account for several major developments that reflect the evolution of the systems movement, including ‘hard systems science,’ cybernetics, and the continuing evolution of a general theory of systems.

2.1.3 Hard-Systems Science

Under hard-systems science, we can account for two organized developments: operations research and systems engineering.

2.1.3.1 Operations Research. During the Second World War, it was again the ‘functional context’ that challenged scientists. The complex problems of logistics and resource management in waging a war became the genesis of developing the earliest organized form of systems science: the quantitative analysis of rather closed systems. It was this orientation from which operations research and management science emerged during the 1950s. This development directed systems science toward ‘hard’ quantitative analysis. Operations research flourished during the 1960s, but in the 1970s, due to the changing nature of sociotechnical systems contexts, it went through a major shift toward a less quantitative orientation.

2.1.3.2 Systems Engineering. This is concerned with the design of closed man-machine systems and larger scale sociotechnical systems. Systems engineering (SE) can be portrayed as a system of methods and tools, specific activities for problem solutions, and a set of relations between the tools and activities. The tools include language, mathematics, and graphics by which systems engineering communicates. The content of SE includes a variety of algorithms and concepts that enable various activities. The first major work in SE was published by A. D. Hall (1962). He presented a comprehensive, three-dimensional morphology for systems engineering. Over a decade later, Sage (1977) changed the directions of SE.

During the 1960s and early 1970s, practitioners of operations research and systems engineering attempted to transfer their approaches into the context of social systems. It led to disasters. It was this period when ‘social engineering’ emerged as an approach to address societal problems. A recognition of failed attempts have led to changes in direction, best manifested by the quotation of Sage in the paragraph above.

2.1.4 Cybernetics

Cybernetics is concerned with the understanding of self-organization of human, artificial, and natural systems; the understanding of understanding; and its relation and relevance to other transdisciplinary approaches. Cybernetics, as part of the systems movement, evolved through two phases: first-order cybernetics, the cybernetics of the observed system, and second-order cybernetics, the cybernetics of the observing system.

2.1.4.1 First-Order Cybernetics. This early formulation of cybernetics inquiry was concerned with communication and control in the animal and the machine (Wiener, 1948). The emphasis on the in allowed focus on the process of self-organization and self-regulation, on circular causal feedback mechanisms, together with the systemic principles that underlie them. These principles underlay the computer/cognitive sciences and are credited with being at the heart of neural network approaches in computing. The first-order view treated information as a quantity, as ‘bits’ to be transmitted from one place to the other. It focused on ‘noise’ that interfered with smooth transmission (Wheatley, 1992). The content, the meaning, and the purpose of information was ignored (Gleick, 1987).

2.1.4.2 Second-Order Cybernetics. As a concept, this expression was coined by Forrester (1984), who describes this shift as follows: “We are now in the possession of the truism
that a description (of the universe) implies one who describes (observes it). What we need now is a description of the ‘describer’ or, in other words, we need a theory of the observer’ (p. 258). The general notion of second-order cybernetics is that “observing systems” awaken the notion of language, culture, and communication (Brier, 1992); and the context, the content, the meaning, and purpose of information becomes central. Second-order cybernetics, through the concept of self-reference, wants to explore the meaning of cognition and communication within the natural and social sciences, the humanities, and information science; and in such social practices as design, education, organization, art, management, and politics, etc. (p. 2).

2.1.5 The Continuing Evolution of Systems Inquiry

The first part of this chapter describes the emergence of the systems idea and its manifestation in the three branches of systems inquiry: systems theory, systems philosophy, and systems methodology. This section traces the evolution of systems inquiry. This evolutionary discussion will be continued later in a separate section by focusing on “human systems inquiry.”

2.1.5.1 The Continuing Evolution of Systems Thinking

In a comprehensive report, commissioned by the Society of General Systems Research, Cavallo (1979) states that systems inquiry shattered the essential features of the traditional scientific paradigm characterized by analytic thinking, reductionism, and determinism. The systems paradigm articulates synthetic thinking, emergence, communication and control, expansionism, and teleology. The emergence of these core systems ideas was the consequence of a change of focus, away from entities that cannot be taken apart without loss of their essential characteristics, and hence can not be truly understood from analysis.

First, this change of focus gave rise to synthetic or systems thinking as complementary to analysis. In synthetic thinking an entity to be understood is conceptualized not as a whole to be taken apart but as a part of one or more larger wholes. The entity is explained in terms of its function, and its role in its larger context. Second, another major consequence of the new thinking is expansionism (an alternative to reductionism), which asserts that ultimate understanding is an ideal that can never be attained but can be continuously approached. Progress toward it depends on understanding ever larger and more inclusive wholes. Third, the idea of nondeterministic causality, advanced by Singer (1959), made it possible to develop the notion of objective teleology, a conceptual system in which such teleological concepts as fire will, choice, function, and purpose could be operationally defined and incorporated into the domain of science.

2.1.5.2 Living Systems Theory (Miller, 1978). This theory was developed as a continuation and elaboration of the organismic orientation of Bertalanffy. The theory is a conceptual scheme for the description and analysis of concrete identifiable living systems. It describes seven levels of living systems, ranging from the lower levels of cell, organ, and organism, to higher levels of group, organizations, societies, and supranational systems.

The central thesis of living systems theory is that at each level a system is characterized by the same 20 critical subsystems whose processes are essential to life. A set of these subsystems processes information (input transducer, internal transducer, channel and net, decoder, associate, decoder, memory, encoder, output transducer, and time). Another set of subsystems process matter and energy (ingestor, distributor, converter, producer, storage, extruder, motor, and supporter). Two subsystems (reproducer and boundary) process matter/energy and information.

Living systems theory presents a common framework for analyzing structure and process and identifying the health and well-being of systems at various levels of complexity. A set of cross-level hypotheses was identified by Miller as a basis for conducting such analysis. During the 1980s, Living systems theory has been applied by a method—called living systems process analysis—to the study of complex problem situations embedded in a diversity of fields and activities. (Living systems process analysis has been applied in educational contexts by Banathy & Mills, 1988.)

2.1.5.3 A General Theory of Dynamic Systems. The theory was developed by Jantsch (1980). He argues that an emphasis on structure and dynamic equilibrium (steady-state flow), which characterized the earlier development of general systems theory, led to a profound understanding of how primarily technological structures may be stabilized and maintained by complex mechanisms that respond to negative feedback. (Nagative feedback indicates deviation from established norms and calls for a reduction of such deviation.) In biological and social systems, however, negative feedback is complemented by positive feedback, which increases deviation by the development of new systems processes and forms. The new understanding that has emerged recognizes such phenomena as self-organization, self-reference, self-regulation, coherent behavior over time with structural change, individuality, symbiosis and coevolution with the environment, and morphogenesis.

This new understanding of systems behavior, says Jantsch, emphasizes process in contrast to “solid” subsystems structures and components. The interplay of process in systems leads to evolution of structures. An emphasis is placed on “becoming,” a decisive conceptual breakthrough brought about by Prigogine (1980). Prigogine’s theoretical development and empirical confirmation of the so-called dissipative structures and his discovery of a new ordering systems principle called order through fluctuation led to an explication of a general theory of dynamic systems. In the 1990s important advancements in dynamical systems theory emerged in such fields as social psychology (Vallacher and Nowak, 1994), where complex social relationships integral to human activity systems are examined. The chaotic and complex nature of human systems, the implicit patterns of values and beliefs which guide the social actions of these systems, enfolds within the explicit patterns of key activities such as
social judgement, decisioning, and valuing in social relations, may be made accessible through dynamic systems theory.

During the early 1980s and well into the 1990s, a whole range of systems thinking based methodologies emerged, based on what is called soft systems thinking. These are all relevant to human and social systems and will be discussed under the heading of human systems inquiry. In this section, four additional developments are discussed: systems thinking based on 'unbounded systems thinking,' "critical systems theory," "liberating systems theory" and "postmodern theory and systems theory."

2.1.5.4 Unbounded Systems Thinking (Mitroff & Livstone, 1993). This development "is the basis for the 'new thinking' called for in the information age" (p. 91). In unbounded systems thinking (UST), "everything interacts with everything." All branches of inquiry depend fundamentally on one another. The widest possible array of disciplines, professions, and branches of knowledge capturing distinctly different paradigms of thought—must be consciously brought to bear on our problems. In UST, the traditional hierarchical ordering of the sciences and the professions—as well as the pejorative bifurcation of the sciences into 'hard' vs. 'soft'—is replaced by a circular concept of relationship between them. The basis for choosing a particular way of modeling or representing a problem is not governed merely by considerations of conventional logic and rationality. It may also involve considerations of justice and fairness as perceived by various social groups and by consideration of personal ethics or morality as perceived by distinct persons. (p. 9)


"The mediation of theory and praxis can only be clarified if to begin with we distinguish between three functions, which are measured in terms of different criteria: the formation and extension of critical theories, which can stand up to scientific discourse; the organization of processes of enlightenment, in which such theories are applied and can be tested in a unique manner by initiation of processes of reflection carried on within certain groups towards which these processes have been directed; and the selection of appropriate strategies, the solution of tactical questions, and the conduct of political struggle. (p. 52)

Critical systems theory came to the foreground in the 1980s (Jackson, 1985; Ulrich, 1983), continuing to influence systems theory into the 1990s (Flood & Jackson, 1991; Jackson, 1991a, 1991b). As Jackson (1991b) explains, CST embraces five major commitments:

1. critical awareness—examining the commitments and values entering into actual systems design
2. social awareness—recognizing organizational and social pressures that lead to the popularization of certain systems theories and methodologies
3. dedication to human emancipation—seeking for all the maximum development of human potential
4. complementary and informed use of systems methodologies
5. complementary and informed development of all varieties—alternative positions and different theoretical underpinnings—of systems approaches.

CST rejects a positivist epistemology of 'hard' systems science, and offers a postpositivist epistemology for "soft" systems with a primary concern of emancipation or liberation through "communicative action" (Habermas, 1984).

2.1.5.6 Liberating Systems Theory (Flood, 1990). This theory is situated, in part, within the CST. Flood, in his development of liberating systems theory (LST), acknowledged the value for bringing the work of both Habermas and Foucault together; a Marxist and poststructuralist, respectively. According to Flood, the effects of dominant ideologies or worldviews influence interpretations of some situations, thus privileging some views over others. LST provides a postpositivist epistemology that enables the liberation oppressed. Toward that purpose, LST is (1) in pursuit of freeing systems theory from certain tendencies and, in a more general sense, (2) tasking systems theory with liberation of the human condition. The first task is developed in three trends: (1) the liberation of systems theory generally from the natural tendency toward self-imposed insulation, (2) the liberation of systems concepts from objectivist and subjectivist delusions, and (3) the liberation of systems theory specifically in cases of internalized localized subjubations in discourse and by considering histories and progressions of systems thinking. The second task of the theory focuses on liberation and emancipation in response to domination and subjagation in work and social situations.

2.1.5.7 Postmodern Theory and Systems Theory. In the 1990s, attention was turned to applying postmodern theories to systems theory. Postmodernism "denies that science has access to objective truth, and rejects the notion of history as the progressive realization and emancipation of the human subject or as an increase in the complexity and steering capacity of societies" (Jackson, 1991, p. 289). The work of Brocklesby and Cummings (1996) and Tsoukas (1992) suggests alternative philosophical perspectives, bringing the work of Foucault (1980) on power/knowledge to the fore in consideration in critical systems perspectives. Within postmodern theory, the rejection of objective truth and the argument that all perspectives, particularly those constructed across boundaries of time, culture, and difference (gender, race, ethnicity, etc.), are fundamentally incommensurate, renders reconciliation between worldviews impossible. Concern for social justice, equality, tolerance, and issues of difference give purpose and direction to the postmodern perspective. A postmodern approach to systems theory recognizes that the unknowability of reality, which renders it impossible to judge the truth, value, or worth of different perspectives, extant from the context of their origin, thus validating or invalidating all perspectives, equally, as the case may be.
Human Systems Inquiry

Human systems inquiry focuses systems theory, systems philosophy, and systems methodology and their applications on social or human systems. This section examines human systems inquiry by (1) presenting some of its basic characteristics, (2) describing the various types of human or social systems, (3) explicating the nature of problem situations and solutions in human systems inquiry, and (4) introducing the “soft-systems” approach and social systems design. The discussion of these issues will help us appreciate why human systems inquiry must be different from other modes of inquiry. Furthermore, inasmuch as education is a human activity system that gives to individuals the authority to act for the collective, and system, such understanding and a review of approaches to setting boundaries between the collectivity and the rest of the human systems inquiry will lead to our discussion on systems world.

The Characteristics of Human Systems

2.1.6 Human Systems Inquiry

Human activity systems can be manifest only as perceptions by human actors who are free to attribute meaning to what they perceive. There will thus never be a single (testable) account of human activity systems, only a set of possible accounts all valid according to particular Weltanschauungen (p. 14).

Checkland further suggests that HASs are structured sets of people who make up the system, coupled with a collection of such activities as processing information, making plans, performing, and monitoring performance. Relatedly, education as a human activity system is a complex set of activity systems such as curriculum design, instruction, assessment, learning, administrating, communicating, information processing, performing (student, teacher, administrator, etc.), and monitoring of performance (student, teacher, administrator, etc.).

Organizations, as human activity systems begin, as Argyris and Schön (1979) suggest, as a social group and become an organization when members must devise procedures for: (1) making decisions in the name of the collectivity, (2) delegating to individuals the authority to act for the collectivity, and (3) setting boundaries between the collectivity and the rest of the world. As these conditions are met, members of the collectivity begin to be able to say “we” about themselves: they can say, “We have decided. We have made our position clear. We have limited our membership.” There is now an organizational “we” that can decide and act (p. 15).

Human systems form—self-organize—through collective activities and around a common purpose or goal. Ackoff and Emery (1972) characterize human systems as purposeful systems whose members are also purposeful individuals who intentionally and collectively formulate objectives. In human systems, “the state of the part can be determined only in reference to the state of the system. The effect of change in one part or another is mediated by changes in the state of the whole” (p. 218).

Ackoff (1984) suggests that human systems are purposeful systems that have purposeful parts and are parts of larger purposeful systems. This observation reveals three fundamental issues, namely, how to design and manage human systems so that they can effectively and efficiently serve (1) their own purposes, (2) the purposes of their purposeful parts and people in the system, and (3) the purposes of the larger system(s) of which they are part. These functions are called (1) self-directiveness, (2) humanization, and (3) environmentalization, respectively. View human systems from an evolutionary perspective, Jantsch (1980) suggests that according to the dualistic paradigm, adaptation is a response to something that evolved outside of the systems. He notes, however, that with the emergence of the self-organizing paradigm, a scientifically founded nondualistic view became possible. This view is process oriented and establishes that evolution is an integral part of self-organization. True self-organization incorporates self-transcendence, the creative reaching out of a human system beyond its boundaries. Jantsch concludes that creation is the core of evolution, it is the joy of life; it is not just adaptation, not just securing survival. In the final analysis, says Laszlo (1987), social systems are value-guided systems, culturally embedded and interconnected. Insofar as they
are independent of biological need fulfillment and reproductive needs, cultures satisfy not physical body needs, but individual and social values. All cultures respond to such suprabiological values. But in what form they do so depends on the specific kind of values people within the cultures happen to have.

2.1.6.2 Types of Human Systems. Human activity systems, such as educational systems, are purposeful creations. People in these systems select, organize, and carry out activities in order to attain their purposes. Reviewing the research of Ackoff (1981), Jantsch (1976), Jackson and Keys (1984), and Southerland (1973), Banathy (1988a) developed a comprehensive classification of HASs premised on (1) the degree to which they are open or closed, (2) their mechanistic vs. systemic nature, (3) their unitary vs. pluralistic position on defining their purpose, and (4) the degree and nature of their complexity (simple, detailed, dynamic). Based on these dimensions, we can differentiate five types of HASs: rigidly controlled, deterministic, purposive, heuristic, and purpose seeking.

2.1.6.2.1 Rigidly Controlled Systems. These systems are rather closed. Their structure is simple, consisting of few elements with limited interaction among them. They have a singleness of purpose and clearly defined goals, and act mechanically. Operational ways and means are prescribed. There is little room for self-direction. They have a rigid structure and stable relationship among system components. Examples are assembly-line systems and man–machine systems.

2.1.6.2.2 Deterministic Systems. These are still more closed than open. They have clearly assigned goals, thus, they are unitary. People in the system have a limited degree of freedom in selecting methods. Their complexity ranges from simple to detailed. Examples are bureaucracies, instructional systems, and national educational systems.

2.1.6.2.3 Purposive Systems. These are still unitary but are more open than closed, and react to their environment in order to maintain their viability. Their purpose is established at the top, but people in the system have freedom to select operational means and methods. They have detailed to dynamic complexity. Examples are corporations, social service agencies, and our public education systems.

2.1.6.2.4 Heuristic Systems. Such systems as R&D agencies and innovative business ventures formulate their own goals under broad policy guidelines; thus, they are somewhat pluralistic. They are open to changes and often initiate changes. Their complexity is dynamic, and their internal arrangements and operations are systemic. Examples of heuristic systems include innovative business ventures, educational R&D agencies, and alternative educational systems.

2.1.6.2.5 Purpose-Seeking Systems. These systems are ideal seeking and are guided by their vision of the future. They are open and coevolve with their environment. They exhibit dynamic complexity and systemic behavior. They are pluralistic, as they constantly seek new purposes and search for new niches in their environments. Examples are (a) communities seeking to establish integration of their systems of learning and human development with social, human, and health service agencies, and their community and economic development programs, and (b) cutting edge R&D agencies.

In working with human systems, the understanding of what type of system we are working with, or the determination of the type of systems we wish to design, is crucial in that it suggests the selection of the approach and the methods and tools that are appropriate to systems inquiry.

2.1.7 The Nature of Problem Situations and Solutions

Working with human systems, we are confronted with problem situations that comprise a system of problems rather than a collection of problems. Problems are embedded in uncertainty and require subjective interpretation. Churchman (1971) suggested that in working with human systems, subjectivity cannot be avoided. What really matters, he says, is that systems are unique, and the task is to account for their uniqueness; and this uniqueness has to be considered in their description and design. Our main tool in working with human systems is subjectivity: reflection on the sources of knowledge, social practice, community, and interest in and commitment to ideas, especially the moral idea, affectivity, and faith.

Relatedly, in working with human systems, we must recognize that they are unbounded. Factors assumed to be part of a problem are inseparably linked to many other factors. A technical problem in transportation, such as the building of a freeway, becomes a land-use problem, linked with economic, environmental, conservation, ethical, and political issues. Can we really draw a boundary? When we seek to improve a situation, particularly if it is a public one, we find ourselves facing not a problem but a cluster of problems, often called problematical. Peccei (1977), the founder of the Club of Rome, says that: Within the problematical, it is difficult to pinpoint individual problems and propose individual solutions. Each problem is related to every other problem; each apparent solution to a problem may aggravate or interfere with others; and none of these problems or their combination can be tackled using the linear or sequential methods of the past. (p. 61)

Ackoff (1981) suggests that a set of interdependent problems constitutes a system of problems, which he calls a mess. Like any system, the mess has properties that none of its parts has. These properties are lost when the system is taken apart. In addition, each part of a system has properties that are lost when it is considered separately. The solution to a mess depends on how its parts interact. In an earlier statement, Ackoff (1974) says that the era of “quest for certainty” has passed. We live an age of uncertainty in which systems are open, dynamic, in which problems live in a moving process. Problems and solutions are in constant flux, hence problems do not stay solved. Solutions to problems become obsolete even if the problems to which
they are addressed are not” (p. 51). Ulrich (1983) suggests that when working with human systems, we should reflect critically on problems. He asks: How can we produce solutions if the problems remain unquestioned? We should transcend problems as originally stated and should explore critically the problem itself with all of those who are affected by the problem. We must differentiate well-structured and well-defined problems in which the initial conditions, the goals, and the necessary operations can all be specified, from ill-defined or ill-structured problems, the kind in which initial conditions, the goals, and the allowable operations cannot be extrapolated from the problem. Discussing this issue, Rittel and Webber (1984) suggest that science and engineering are dealing with well-structured or tame problems. But this stance is not applicable to open social systems. Still, many social science professionals have mimicked the cognitive style of scientists and the operational style of engineers. But social problems are inherently wicked problems. Thus, every solution of a wicked problem is tentative and incomplete, and it changes as we move toward the solution. As the solution changes, as it is elaborated, so does our understanding of the problem. Considering this issue in the context of systems design, Rittel and Webber (1984) suggest that the “ill-behaved” nature of design problem situations frustrates all attempts to start out with an information and analysis phase, at the end of which a clear definition of the problem is rendered and objectives are defined that become the basis for synthesis, during which a “monastic” solution can be worked out. Systems design requires a continuous interaction between the initial phase that triggers design and the state when design is completed.

2.1.8 The Soft-Systems Approach and Systems Design

From the 1970s on, it was generally realized that the nature of issues in human/social systems is “soft” in contrast with “hard” issues and problems in systems engineering and other quantitative focused systems inquiry. Hard-systems thinking and approaches were not usable in the context of human activity systems. As Checkland (1981) notes, “it is impossible to start the studies by naming ‘the system’ and defining its objectives, and without this naming/definition, hard systems thinking collapses” (pp. 15–16).


Prior to the emergence of social systems design, the improvement approach to systems change manifested traditional social planning (Banathy, 1991). This approach, still practiced today, reduces the problem to manageable pieces and seeks solutions to each. Users of this approach believe that solving the problem in a part, he moves to modify it. This approach is based on the separability principle of incrementalism. Churchman advocates “nonseparability” when the application of decision rules depends on the state of the whole system, and when a certain degree of instability of a part occurs, the designer can recognize this event and change the system so that the part becomes stable. “It can be seen that design, properly viewed, is an enormous liberation of the intellectual spirit, for it challenges this spirit to an unbounded speculation about possibilities” (p. 13). A liberated designer will look at present practice as a point of departure at best. Design is a thought process and a communication process. Successful design is one that enables someone to transfer thought into action or into another design.

Checkland (1981) and Checkland and Scholes (1990) developed a methodology based on soft-systems thinking for working with human activity systems. The methodology is considered a learning system which uses systems ideas to formulate basic mental acts of four kinds: perceiving, predicting, comparing, and deciding for action. The output of the methodology is very different from the output of systems engineering. It is learning which leads to decision to take certain actions, knowing that this will lead not to ‘the problem’ being now solved, but to a changed situation and new learning. (Checkland, 1981, p. 17, italics in original)

The methodology defined here is a direct consequence of the concept, human activity system. We attribute meaning to all human activity. Our attributions are meaningful in terms of our particular image of the world, which, in general, we take for granted.

Systems design, in the context of social systems, is a future-creative disciplined inquiry. People engage in this inquiry to design a system that realizes their vision of the future, their own expectations, and the expectations of their environment. Systems design is a relatively new intellectual technology. It emerged only recently as a manifestation of open-system thinking and corresponding ethically based soft-systems approaches. This new intellectual technology emerged, just in time, as a disciplined inquiry that enables us to align our social systems with the new realities of the information/knowledge age (Banathy, 1991).
piece by piece ultimately will correct the larger issue it aims to remedy. But systems designers know that “getting rid of what is not wanted does not give you what is desired.” In sharp contrast with traditional social planning, systems design—represented by the authors above—seeks to understand the problem situation as a system of interdependent and interacting problems, and seeks to create a design as a system of interdependent and interacting solution ideas. Systems designers envision the entity to be designed as a whole, as one that is designed from the synthesis of the interaction of its parts. Systems design requires both coordination and integration. We need to design all parts of the system interactively and simultaneously. This requires coordination, and designing for interdependency across all systems levels invites integration.

2.1.9 Reflections

In the first part of this chapter, systems inquiry was defined, and the evolution of the systems movement was reviewed. Then we focused on human systems inquiry, which is the conceptual foundation of the development of a systems view and systems applications in education. As we reflect on the ideas presented in this part, we realize how little of what was discussed here has any serious manifestation or application in education. Therefore, the second part of this chapter is devoted to the exploration of a systems view of education and its practical applications in working with systems of learning and human development.

2.2 THE SYSTEMS VIEW AND ITS APPLICATION IN EDUCATION

In the first part of this section of the chapter we present a discussion of the systems view and its relevance to education. This is followed by a focus on the application of the intellectual technology of comprehensive systems design as an approach to the transformation of education.

2.2.1 A Systems View of Education

A systems view enables us to explore and characterize the system of our interest, its environment, and its components and parts. We can acquire a systems view by integrating systems concepts and principles in our thinking and learning to use them in representing our world and our experiences with their use. A systems view empowers us to think of ourselves, the environments that surround us, and the groups and organizations in which we live in a new way: the systems way. This new way of thinking and experiencing enables us to explore, understand, and describe the (Banathy, 1988a, 1991, 1996):

- Relationships, interactions, and mutual interdependencies of systems operating at those levels within educational systems.
- Relationships, interactions, and information/matter/energy exchanges between educational systems and their environments.
- Purposes, the goals, and the boundaries of educational systems as those emerge from an examination of the relationship and mutual interdependence of education and the society.
- Nature of education as a purposeful and purpose-seeking complex of open system, operating at various interdependent and integrated system levels.
- Dynamics of interactions, relationships, and patterns of connectedness among the components of systems.
- Properties of wholeness and the characteristics that emerge at various systems levels as a result of systemic interaction and synthesis.
- Systems processes, i.e., the behavior of education as a living system, and changes that are manifested of systems and their environments over time.

The systems view generates insights into ways of knowing, thinking, and reasoning that enable us to apply systems inquiry in educational systems. Systemic educational change will become possible only if the educational community will develop a systems view of education, if it embraces the systems view, and if it applies the systems view in its approach to change.

Systems inquiry and systems applications have been applied in the worlds of business and industry, in information technology, in the health services, in architecture and engineering, in environmental issues. However, in education—except for a narrow application in instructional technology (discussed later)—systems inquiry is highly underconceptualized and underutilized, and it is often manifested in misdirected applications.

With very few exceptions, systems philosophy, systems theory, and systems methodology as subjects of study and applications are only recently emerging as topics of consideration in educational professional development programs, and then only in limited scope. Generally, capability in systems inquiry is limited to specialized interests groups in the educational research community. It is our firm belief that unless our educational communities and our educational professional organizations embrace systems inquiry, and unless our research agencies learn to pursue systems inquiry, the notions of “systemic” reform and “systemic approaches” to educational renewal will remain hollow and meaningless rhetoric.

The notion of systems inquiry enforces large sets of concepts that constitute principles, common to all kinds of systems. Acquiring a “systems view of education” means that we learn to think about education as a system, we can understand and describe it as a system, we can put the systems view into practice and apply it in educational inquiry, and we can design education so that it will manifest systemic behavior. Once we individually and collectively develop a systems view then—and only then—can we become “systemic” in our approach to educational change, only then can we apply the systems view to the reconceptualization and redefinition of education as a...
During the past decade, we have applied systems thinking and the systems view in human and social systems. As a result we now have a range of systems models and methods that enable us to work creatively and successfully with education as a complex social system. Banathy (1988b) organized these models and methods in four complementary domains of inquiry in educational organizations as follows:

- The systems analysis and description of educational systems by the application of three systems models: the systems environment, functions/structure, and process/behavioral models
- Systems design, conducting comprehensive design inquiry with the use of design models, methods, and tools appropriate to education
- Implementation of the design by systems development and institutionalization
- Systems management and the management of change

Figure 2.1 depicts the relational arrangement of the four domains of organizational inquiry. In the center of the figure is the integrating cluster.

In the center, the core values, core ideas, and organizing perspectives constitute bases for both the development of the inquiry approach and the decisions we make in the course of the inquiry.

Of special interest to us in this chapter is the description and analysis of educational systems and social systems design as a disciplined inquiry that offers potential for the development of truly systemic educational change. In the remainder of the chapter, we focus on these two aspects of systems inquiry.

2.2.2 Three Models That Portray Education as a System

Models are useful as a frame of reference to talk about the system the models represent. Because our purpose here is to understand and portray education as a system, it is important to create a common frame of reference for our discourse, to build systems models of education.

Models of social systems are built by the relational organization of the concepts and principles that represent the context, the content, and the process of social systems. Banathy (1992) constructed three models that represent (a) systems–environment relationships, (b) the functions/structure of social systems, and (c) the processes/behavior of systems through time. These models are "lenses" that can be used to look at educational systems and understand, describe, and analyze them as open, dynamic, and complex social systems. These models are briefly described next.

2.2.2.1 Systems–Environment Model. The use of the systems–environment model enables us to describe an educational system in the context of its community and the larger society. The concepts and principles that are pertinent to this model help us define systems–environment relationships, interactions, and mutual interdependencies. A set of inquiries, built into the model, guide the user to make an assessment of the environmental responsiveness of the system and, conversely, the adequacy of the responsiveness of the environment toward the system.

2.2.2.2 Functions/Structure Model. The use of the functions/structure model focuses our attention on what the educational system is at a given moment of time. It projects a "still-picture" image of the system. It enables us to (a) describe the goals of the system (that elaborate the purposes that emerged from the systems–environment model), (b) identify the functions that have to be carried out to attain the goals, (c) select the components (of the system) that have the capability to carry out the functions, and (d) formulate the relational arrangements of the components that constitute the structure of the system. A set of inquiries are built into the model that guide the user to probe into the function/structure adequacy of the system.

2.2.2.3 Process/Behavioral Model. The use of the process/behavioral model helps us to concentrate our inquiry on the process of social systems. Banathy (1988b) constructed three models that represent (a) the processes/environment relationships, (b) the functions/structure of social systems, and (c) the processes/behavior of systems through time. These models are "lenses" that can be used to look at educational systems and understand, describe, and analyze them as open, dynamic, and complex social systems. These models are briefly described next.
2.2.3 Systems Inquiry for Educational Systems

Systems inquiry is a disciplined inquiry by which systems knowledge and systems competencies are developed and applied in engaging in conscious self-directed educational change. In this section we focus on four domains of systems inquiry, explore their relationships, and define the modes of systems inquiry as discipline inquiry in relation to educational systems.

2.2.3.1 The Four Domains of Systems Inquiry in Educational Systems. Systems inquiry incorporates four interrelated domains: philosophy, theory, methodology, and application. Systems philosophy, as explicated earlier in this chapter, is composed of three dimensions: ontology, epistemology, and axiology. Of these, epistemology has two domains of inquiry. It studies the process of change or coevolution of the system within the systems inquiry space (systems design space) to generate knowledge and understanding about how systems change works, in our case, within educational systems. The ontological dimension, in relation to systems inquiry in education, is concerned with the emergence of a new system view in education, shifting from a view of education as inanimate ("thing view"), to a view of education as a living open system, recognizing the primacy of organizing—self-organizing—relationship processes. The axiological dimension of systems inquiry in social systems like education brings to the foreground concern for the moral, ethical, and aesthetic qualities of systems. In particular, social justice, equity, tolerance, issues of difference, caring, community, and democracy. Systems theory articulates interrelated concepts and principles that apply to systemic change process as a human activity system (Jenlink & Reigeluth, 2000). It seeks to offer plausible and reasoned general principles that explain systemic change process as a disciplined inquiry. Systems methodology has two domains of inquiry. The study of methods within the system by which knowledge is generated about systems and the identification and description of application-based strategies, tools, methods, and models used to design inquiry systems as well as used to animate the system inquiry processes in relation to the design of a solution for complex system problems. Systems application takes place in functional contexts of intentional systems design and systemic change. Application refers to the dynamic interaction and translation of theory, philosophy, and methodology into social action through the systems inquiry process.

2.2.3.2 The Dynamic Interaction of the Four Domains. Systems philosophy, theory, methodology, and application come to life as they are used and applied in the functional context of designing systems inquiry and relatedly, as systems inquiry is used and applied in educational systems. It is in the practical context of application of systems inquiry in education that systems philosophy, theory, and methodology are confirmed, changed, modified, and reaffirmed. Systems philosophy provides the underlying values, beliefs, assumptions, and perspectives that guide us in “defining and organizing in relational arrangements the concepts and principles that constitute an educational system. Systems theory in its natural and human activity systems. Systems methodology dynamically work to guide us in ‘developing, selecting, and organizing approaches, strategies, methods, and tools into the scheme of epistemology (p. 264) of educational systems design. Systems methodology and application interact to guide us in the confirmation and/or need for change/modification of systems theory and epistemology. The four domains, working dynamically, ‘continuously confirm and/or modifies the other’ (p. 264). The four domains constitute the conceptual system of systems inquiry in educational systems. It is important to note that the relational influence of one domain on the others, recursive and multidimensional in nature, links one domain to the others.

2.2.3.3 Two Modes of Systems Inquiry. Systems inquiry, as disciplined inquiry, comes to life as the four domains of philosophy, theory, methodology, and application each interact recursively. In particular, when social systems design epistemology, in concert with methodological considerations for systems inquiry, work in relation to the philosophical and theoretical foundations, “faithfulness” of the systems design epistemology is tested. Simultaneously, the relevance of “its philosophical and theoretical foundations and its successes of application” (Banathy, 2000, p. 265) are examined in the functional context of systems inquiry and design—in the systems design space. In the course of this dynamic interaction, two modes of disciplined inquiry are operating: “decision-oriented disciplined inquiry and conclusion-oriented disciplined inquiry” (Banathy, 2000, p. 266). Banathy (2000) has integrated these two modes, first articulated by Cronbach and Suppes (1969) for educational systems, into systems inquiry for social systems design. Figure 2.2 provides a relational framework of these two modes of inquiry.

2.2.4 Designing Social Systems

Systems design in the context of human activity systems is a future-creating disciplined inquiry. People engage in design in
order to devise and implement a new system, based on their vision of what that system should be.

There is a growing awareness that most of our systems are out of sync with the new realities, particularly since we crossed the threshold into a new millennium. Increasingly, the realization of postmodernity challenges past views and assumptions grounded in modernist and outdated modes of thinking. Those who understand this and are willing to face these changing realities call for the rethinking and redesign of our systems. Once we understand the significance of these new realities and their implications for us individually and collectively, we will reaffirm that systems design is the only viable approach to working with and creating and recreating our systems in a changing world of new realities. These new realities and the societal and organizational characteristics of the new millennium call for the development of new thinking, new perspectives, new insight, and—based on these—the design of social systems that will be in sync with those realities and emergent characteristics.

In times of accelerating and dynamic changes, when a new stage is unfolding in societal evolution, inquiry should not focus on the improvement of our existing systems. Such a focus limits perception to adjusting or modifying the old design in which our systems are still rooted. A design rooted in an outdated image is useless. We must transcend old ways of thinking and engage in new ways of thinking, at higher levels of sophistication. To paraphrase Albert Einstein, we can no longer solve the problems of education by engaging in the same level of thinking that created them, rather we must equip ourselves to think beyond the constraints of science, we must use our creative imagination. We should transcend the boundaries of our existing system, explore change and renewal from the larger vistas of our transforming society, envision a new image of our systems, create a new design based on the image, and transform our systems by implementing the new design.

2.2.4.1 Systems Design: A New Intellectual Technology.

Systems design in the context of social systems is “coming into its own as a serious intellectual technology in service of human intention” (Nelson, 1993, p. 145). It emerged only recently as a manifestation of open-systems thinking and corresponding soft-systems approaches. The epistemological and ontological importance of systems design is recognized when situated within the complex nature of social problems in society and in relation to the teleological issues of human purpose (Nelson, 1993). As an intellectual technology, systems design enables us to align our societal systems, most specifically our educational systems, with the “new realities” of the postmodern information/knowledge age. Individuals who see a need to transcend existing systems, in our case educational systems, and design new systems that enable the realization of a vision of the future society use systems design. This vision of the future society is situated within the societal and environmental context in which these individuals live and from which they envision new systems decidedly different from systems currently in existence. As a nascent method of disciplined inquiry and emergent intellectual technology, systems inquiry brings to the foreground a requirement of cognition in systems philosophy, theory, and methodology. As an intellectual technology and mode of inquiry, systems design seeks to understand a problem situation as a system of interconnected, interdependent, and interacting issues and to create a design as a system of interconnected, interdependent, interacting, and internally consistent solution ideas (Banathy, 1996, p. 46).

The need for systems knowledge and competencies in relation to accepting intellectual responsibility for designing the inquiry system as well as applying the inquiry system to resolve complex social problems, sets systems design apart from traditional social planning approaches. From a systems perspective, the individuals who comprise the social system, i.e., education, are the primary beneficiary or users of the system. Therefore, these same individuals are socially charged with the responsibility for constantly determining the “goodness of fit” of existing systems in the larger context of society and our environment, and engaging in designing new systems that meet the emerging needs of humanity.

2.2.5 When Should We Design?

Social systems are created for attaining purposes that are shared by those who are in the system. Activities in which people in the system are engaged are guided by those purposes. There are times when there is a discrepancy between what our system actually attains and what we designated as the desired outcome of the system. Once we sense such discrepancy, we realize that something has gone wrong, and we need to make some changes either in the activities or in the way we carry out activities. Changes within the system are accomplished by adjustment, modification, or improvement. But there are times when we have evidence that changes within the system would not suffice. We might realize that our purposes are not viable anymore and we need to change them. We realize that we now need to change the whole system. We need a different system; we need to redesign our system; or we need to design a new system.

The changes described above are guided by self-regulation, accomplished, as noted earlier, by positive feedback that signals the need for changing the whole system. We are to formulate new purposes, introduce new functions, new components, and new arrangements of the components. It is by such self-organization that the system responds to positive feedback and learns to coevolve with its environment by transforming itself into a new state at higher levels of existence and complexity. The process by which this self-organization, coevolution, and transformation come about is systems design.

2.2.6 Models for Building Social Systems

Until the 1970s, design, as a disciplined inquiry, was primarily the domain of architecture and engineering. In social and sociotechnical systems, the nature of the inquiry was systems analysis, operation research, or social engineering. These approaches reflected the kind of systematic, closed systems, and
hard-systems thinking discussed in the previous section. It was not until the 1970s that we realized that the use of these approaches was not applicable; in fact, they were counterproductive to working with social systems. We became aware that social systems are open systems; they have dynamic complexity; and they operate in turbulent and ever-changing environments. Premised on this understanding, a new orientation emerged, grounded in "soft-systems" thinking. The insights gained from this orientation became the basis for the emergence of a new generation of designers and the development of new design models applicable to social systems. Earlier we listed systems researchers who made significant contributions to the development of approaches to the design of open social systems. Among them, three scholars—Ackoff, Checkland, and Nadler—were the ones who developed comprehensive process models of systems design. Their work set the trend for continuing work in design research and social systems design.

2.2.6.1 Ackoff: A Model for the Design of Idealized Systems. The underlying conceptual base of Ackoff's design model (1981) is a systems view of the world. He explores how our concept of the world has changed in recent time from the machine age to the systems age. He defines and interprets the implications of the systems age and the systems view to systems design. He sets forth design strategies, followed by implementation planning. At the very center of his approach is what he calls idealized design.

Design commences with an understanding and assessment of what is now. Ackoff (1981) calls this process formulating the mess. The mess is a set of interdependent problems that are independent of independently obtained solutions to the parts of the mess. It should deal with messes as wholes, systemically aggregated of independently obtained solutions to the parts of the mess. It should deal with messes as wholes, systemically aggregated of independently obtained solutions to the parts of the mess.

The process of creating the idealized system. Using Checkland's approach, during the first stage we look at the problem situation of the system, which we find in its real-life setting as being "unstructured." At this stage, our focus is not on specific problems but the situation in which we perceive the problem. Given the perceived "unstructured situation," during Stage 2 we develop a richest possible structured picture of the problem situation. These first two stages operate in the context of the real world.

2.2.6.2 Checkland's Soft-Systems Model. Checkland in his work (1981) creates a solid base for his model for systems change by reviewing (a) science as human activity, (b) the emergence of systems science, and (c) the evolution of systems thinking. He differentiates between "hard-systems thinking," which is appropriate to work with, rather than closed, engineered type of systems and "soft-systems thinking," which is required in working with social systems. He says that he is "trying to make systems thinking a conscious, generally accessible way of looking at things, not the stock of trade of experts" (p. 162). Based on soft-systems thinking, he formulated a model for working with and changing social systems.

His seven-stage model generates a total system of change functions, leading to the creation of a future system. His conceptual model of the future system is similar in nature to Ackoff's idealized system. Using Checkland's approach, during the first stage we look at the problem situation of the system, which we find in its real-life setting as being "unstructured." At this stage, our focus is not on specific problems but the situation in which we perceive the problem. Given the perceived "unstructured situation," during Stage 2 we develop a richest possible structured picture of the problem situation. These first two stages operate in the context of the real world.

The next two stages are developed in the conceptual realm of systems thinking. Stage 3 involves speculating about some systems that may offer relevant solutions to the problem situation and preparing concise "root definitions" of what these systems are (not what they do). During Stage 4, the task is to develop abstract representations, models of the relevant systems, for which root definitions were formulated at Stage 3. These representations are conceptual models of the relevant systems, composed of verbs, denoting functions. This stage consists of two sub-stages. First, we describe the conceptual model. Then, we check it against a theory-based, formal model of systems. Checkland adopted Churchman's model (1971) for this purpose.

During the last three stages, we move back to the realm of the real world. During Stage 5, we compare the conceptual model with the structured problem situation we formulated during Stage 2. This comparison enables us to identify, during Stage 6, feasible and desirable changes in the real world. Stage 7 is devoted to taking action and introducing changes in the system.

2.2.6.3 Nadler's Planning and Design Approach. Nadler, an early proponent of designing for the ideal (1967), is the third systems scholar who developed a comprehensive model (Nadler, 1981) for the design of sociotechnical systems. During
Phase 1, his strategy calls for the development of a hierarchy of purpose statements, which are formulated so that each higher level describes the purpose of the next lower level. From this purpose hierarchy, the designers select the specific purpose level for which to create the system. The formulation of purpose is coupled with the identification of measures of effectiveness that indicate the successful achievement of the defined purpose. During this phase, designers explore alternative reasons and expectations that the design might accomplish.

During Phase 2, “creativity is engaged as ideal solutions are generated for the selected purposes within the context of the purpose hierarchy,” says Nadler (1981, p. 9). He introduced a large array of methods that remove conceptual blocks, nurture creativity, and widen the creation of alternative solutions ideas.

During Phase 3, designers develop solution ideas into systems of alternative solutions. During this phase, designers play the believing game as they focus on how to make ideal solutions work, rather than on the reasons why they won’t work. They try ideas out to see how they fit.

During Phase 4, the solution is detailed. Designers build into the solution specific arrangements that might cope with potential exceptions and irregularities while protecting the desired qualities of solutions. As Nadler (1981) says: “Why discard the excellent solution that copes with 95% of the conditions because another 5% cannot directly fit into it?” (p. 11). As a result, design solutions are often flexible, multichanneled, and pluralistic.

During Phase 5, the implementation of the selected design solution occurs. In the context of the purpose hierarchy, the ideal solution is set forth as well as the plan for taking action necessary to install the solution. However, it is necessary to realize that the, “most successful implemented solution is incomplete if it does not incorporate the seeds of its own improvement. An implemented solution should be treated as provisional” (Nadler, 1981, p. 11). Therefore, each system should have its own arrangements for continuing design and change.

In a later book, coauthored by Nadler and Hibino (1990), a set of principles is discussed that guides the work of designers. These principles can serve as guidelines that keep designers focused on seeking solutions rather than on being preoccupied by problems. In summary form, the principles include:

- The “uniqueness principle” suggests that whatever the apparent similarities, each problem is unique, and the design approach should respond to the unique contextual situation.
- The “purposes principle” calls for focusing on purposes and expectations rather than on problems. This focus helps us strip away nonessential aspects and prevents us from working on the wrong problem.
- The “ideal design principle” stimulates us to work back from the ideal target solution.
- The “systems principle” explains that every design setting is part of a larger system. Understanding the systems matrix of embeddedness helps us to determine the multilevel complexities that we should incorporate into the solution model.

The “limited information principle” points to the pitfall that too much knowing about the problem can prevent us from seeing some excellent alternative solutions.

- The “people design principle” underlines the necessity of involving the design all those who are in the systems and who are affected by the design.
- The “betterment timeline principle” calls for the deliberate building into the design the capability and capacity for continuing betterment of the solution through time.

2.2.7 A Process Model of Social Systems Design

The three design models introduced above have been applied primarily in the corporate and business community. Their application in the public domain has been limited. Still, we can learn much from them as we seek to formulate an approach to the design of social and societal systems. In the concluding section of Part 2, we introduce a process model of social system design that has been inspired and informed by the work of Ackoff, Checkland, and Nadler, and is a generalized outline of Banathy’s (1991) work of designing educational systems.

The process of design that leads us from an existing state to a desired future state is initiated by an expression of why we want to engage in design. We call this expression of want the genesis of design. Once we decide that we want to design a system other than what we now have, we must:

- Transcend the existing state or the existing system and leave it behind.
- Envision an image of the system that we wish to create.
- Design the system based on the image.
- Transform the system by developing and implementing the system based on the design.

Transcending, envisioning, designing, and transforming the system are the four major strategies of the design and development of social systems, which are briefly outlined below.

2.2.7.1 Transcending the Existing State. Whenever we have an indication that we should change the existing system or create a new system, we are confronted with the task of transcending the existing system or the existing state of affairs. We devised a framework that enables designers to accomplish this transcendence and create an option field, which they can use to draw alternative boundaries for their design inquiry and consider major solution alternatives. The framework is constructed of four dimensions: the focus of the inquiry, the scope of the inquiry, relationship with other systems, and the selection of system type. On each dimension, several options are identified that gradually extend the boundaries of the inquiry. The exploration of options leads designers to make a series of decisions that charts the design process toward the next strategy of systems design.

2.2.7.2 Envisioning: Creating the First Image. Systems design creates a description, a representation, a model of the future system. This creation is grounded in the designers’ vision, ideas, and aspirations of what that future system should be. As the designers draw the boundaries of the design inquiry
on the framework and make choices from among the options, they collectively form core ideas that they hold about the desired future. They articulate their shared vision and synthesize their core ideas into the first image of the system. This image becomes a magnet that pulls designers into designing the system that will bring the image to life.

2.2.7.3 Designing the New System Based on the Image.

The image expresses an intent. One of the key issues in working with social systems is: How to bring intention and design together and create a system that transforms the image into reality? The image becomes the basis that initiates the strategy of transformation by design. The design solution emerges as designers

1. Formulate the mission and purposes of the future system
2. Define its specifications
3. Select the functions that have to be carried out to attain the mission and purposes
4. Organize these functions into a system
5. Design the system that will guide the functions and the organization that will carry out the functions
6. Define the environment that will have the resources to support the system
7. Describe the new system by using the three models we described earlier—the systems-environment model, the functions/structure model, and the process/behavioral model (Banathy, 1992)
8. Prepare a development/implementation plan.

2.2.7.4 Transforming the System Based on the Design.

The outcome of design is a description, a conceptual representation, or modeling of the new system. Based on the models, we can bring the design to life by developing the system based on the models that represent the design and then implementing and institutionalizing it (Banathy, 1986, 1991, 1996).

We elaborated the four strategies in the context of education in our earlier work as we described the processes of (1) transcending the existing system of education, (2) envisioning and defining the image of the desired future system, (3) designing the new system based on the image, and (4) transforming the existing system by developing/implementing/institutionalizing the new system based on the design.

In this section, a major step has been taken toward the understanding of systems design by exploring some research findings about design, examining a set of comprehensive design models, and proposing a process model for the design of educational and other social systems. In the closing section, we present the disciplined inquiry of systems design as the new imperative in education and briefly highlight distinctions between instructional design and systems design.

2.2.8 Systems Design: The New Imperative in Education

Many of us share a realization that today's schools are far from being able to do justice to the education of future generations. There is a growing awareness that our current design of education is out of sync with the new realities of the information/knowledge era. Those who are willing to face these new realities understand that:

• Rather than improving education, we should transcend it.
• Rather than revising it, we should revision it.
• Rather then reforming, we should transform it by design.

We now call for a metamorphosis of education. It has become clear to many of us that educational inquiry should not focus on the improvement of existing systems. Staying within the existing boundaries of education constrains and delimits perception and locks us into prevailing practices. At best, improvement or restructuring of the existing system can attain some marginal adjustment of an educational design that is still rooted in the perceptions and practices of the 19th century machine age.

Adjusting a design rooted in an outdated image, creates far more problems than it solves. At best, we resolve few if any of the issues we set out to address, and then only in superficial ways, while simultaneously risking the reification of many of the existing problems that problematize education and endanger the future for our children. We know this only too well. The escalating rhetoric of educational reform has created high expectations, but the realities of improvement efforts have not delivered on those expectations. Improving what we have now does not lead to any significant results, regardless of how much money and effort we invest in it.

Our educational communities—including our educational technology community—have reached an evolutionary juncture in our journey toward understanding and implementing educational renewal. We are now confronted with the reality that traditional philosophies, theories, methods, and applications are unable to attend to the complex nature of educational systems, in particular when we apply ways of thinking which further exacerbate fragmentation and incoherence in the system. There is a need for systems design that enables change of the system rather than limiting change to within the system (Jenlink, 1995). Improving what exists, when what exists isn't meeting the needs of an increasingly complex society, only redefines the problem rather than providing solution. Change that focuses on design of an entire system, rather than change or improvement in parts of the system, moves to the forefront systems inquiry as a future-creating approach to educational renewal.

Systems philosophy, theory, methodology and related systems thinking that emerges as we engage in a systems view of education guides the reenchantment of educational renewal. The purposeful and viable creation of new organizational capacities and individual and collective competencies and capabilities grounded in systems, enables us to empower our educational communities so that they can engage in the design and transformation of our educational systems by creating new systems of learning and human development. Systems inquiry and its application in education is liberating and renewing, which recognizes the import of valuing, nurturing, and sustaining the human capacity for applying a new intellectual technology in the design human activity systems like education.
2.2.9 Instructional Design Is Not Systems Design

A question, which frequents the educational technology community, reflects a longstanding discourse concerning systems design. Is there really a difference between the intellectual technology of instructional design and systems design? A review of this chapter should lead the reader to an understanding of the difference.

An understanding of the process of designing education as an open social system, reviewed here, and the comparison of this with the process of designing instructional or training systems, known well to the reader, will clearly show the difference between the two design inquiries. Banathy (1987) discussed this difference at some length earlier. Here we briefly highlight some of the differences:

- Education as social system is open to its environment, its community, and the larger society, and it constantly and dynamically interacts with its environment.
- An instructional system is a subsystem of an instructional program that delivers a segment of the curriculum. The curriculum is embedded in the educational system.
- An instructional system is three systems levels below education as a social system.
- We design an educational system in view of societal realities/experiences/aspirations and core ideas and values. It is from these that an image of the future system emerges, based on which we then formulate the core definition, the mission, and purposes of the system.
- We design an instructional system against clearly defined instructional objectives that are derived from the larger institutional program and—at the next higher level—from the curriculum.
- We design an instructional system as a closed system. The technology of its design is an engineering (hard-system) technology. An educational system is open and is constantly coevolving with its environment. Its design applies soft-systems methods.
- In designing an educational system we engage in the design activity those individuals/collectives who are serving the system, those who are served by it, and those who are affected by it.
- An instructional system is designed by the expert educational technologist who takes into account the characteristics of the user of the system.
- A designed instructional system is often delivered by computer software and other mediation. An educational system is a human/social activity system that relies primarily on human/social interaction. Some of the interactions, for example, planning or information storing, can be aided by the use of software.

2.2.10 The Challenge of the Educational Technology Community

As members of the educational technology community, we are faced with a four-pronged challenge: (1) We must transcend the constraints and limits of the means and methods of instructional technology. We should clearly understand the difference between the design of education as a social system and instructional design. (2) We must develop open-systems thinking, acquire a systems view, and develop competence in systems design. (3) We must create programs and resources that enable our larger educational community to develop systems thinking, a systems view, and competence in systems design. (4) We must assist our communities across the nation to engage in the design and development of their systems of learning and human development. Our societal challenge is to place our self in the service of transforming education by designing new systems of education, creating just, equitable, caring, and democratic systems of learning and development for future generations.

Accepting the responsibility for creating new systems of education means committing ourselves to systems inquiry and design and dedicating ourselves to the betterment of education, and therefore humankind. Through education we create the future, and there is no more important task and no nobler calling than participating in this creation. The decisions is ours today; the consequences of our actions are the inheritance of our children, and the generations to come.

References

2. Systems Inquiry in Education


Jantsch, E. (1972). Systems Inquiry in Education. • 55


I. BIBLIOGRAPHY OF SYSTEMS-RELATED WRITINGS

The Design of Educational Systems


Articles (Representative Samples)

From Systems Research and Behavioral Science.

Social Systems Design


Vol. 4, #1: A. Hatchel et al., Innovation as system intervention.


Vol. 4, #4: J. Warfield, Thinking about systems.


Vol. 5, #5: M. C. Jackson, Systems methods for organizational analysis and design.

Vol. 6, #4: B. H. Banathy, The design of evolutionary guidance systems.


Vol. 8, #2: T. F Gougen, Family stories as mechanisms of evolutionary guidance.


Vol. 15, #1: R. L. Ackoff & J. Gharajedaghi, Reflections on systems and their models; C. Tsouvalis & P. Checkland, Re...

Vol. 15, #2: E. Herrschel, An agenda for enhancing systemic thinking in society.


*Primary and state of the art significance.
II. ELABORATION

Books: Design Thinking–Design Action


Banathy B. et al. (1979). Design models and methodologies. San Francisco, CA: Far West Laboratory.


